DOI QR코드

DOI QR Code

Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D

  • Haeri, Hadi (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Marji, Mohammad Fatehi (Department of Mining Engineering, Yazd University)
  • Received : 2018.08.26
  • Accepted : 2018.11.15
  • Published : 2018.11.25

Abstract

The Brazilian tensile strength of concrete samples is a key parameter in fracture mechanics since it may significantly change the quality of concrete materials and their mechanical behaviors. It is well known that porosity is one of the most often used physical indices to predict concrete mechanical properties. In the present work the influence of porosity shape on concrete tensile strength characteristics is studied, using a bonded particle model. Firstly numerical model was calibrated by Brazilian experimental results and uniaxial test out puts. Secondly, Brazilian models consisting various pore shapes were simulated and numerically tested at a constant speed of 0.016 mm/s. The results show that pore shape has important effects on the failure pattern. It is shown that the pore shape may play an important role in the cracks initiation and propagation during the loading process which in turn influence on the tensile strength of the concrete samples. It has also been shown that the pore size mainly affects the ratio of uniaxial compressive strength to that of the tensile one in the simulated material samples.

Keywords

References

  1. Al-Harthi, A.A., Al-Amri, R.M. and Shehata, W.M. (1999), "The porosity and engineering properties of vesicular basalt in Saudi Arabia", Eng. Geol., 54, 313-320. https://doi.org/10.1016/S0013-7952(99)00050-2
  2. Ashby, M.F. and Sammis, C.G. (1990), "The damage mechanics of brittle solids in compression", Pure Appl. Geophys., 133, 489-521. https://doi.org/10.1007/BF00878002
  3. Baud, P., Wong, T. and Zhu, W. (2014), "Effects of porosity and crack density on the compressive strength of rocks", Int. J. Rock Mech. Min. Sci., 67, 202-211. https://doi.org/10.1016/j.ijrmms.2013.08.031
  4. Bourbie, T. and Zinszner, B. (1985), "Hydraulic and acoustic properties as a function of porosity in Fontainebleau Sandstone", J. Geophys. Res.: Solid Earth, 90, 11524-11532. https://doi.org/10.1029/JB090iB13p11524
  5. Bubeck, A., Walker, R.J., Healy, D., Dobbs, M. and Holwell, D.A. (2017), "Pore geometry as a control on rock strength", Earth Planet. Sci. Lett., 457, 38-48. https://doi.org/10.1016/j.epsl.2016.09.050
  6. Chang, C., Zoback, M.D. and Khaksar, A. (2006), "Empirical relations between rock strength and physical properties in sedimentary rocks", J. Petrol. Sci. Eng., 51, 223-237. https://doi.org/10.1016/j.petrol.2006.01.003
  7. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44, 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  8. Cho, N., Martin, C.D. and Sego, D.C. (2008), "Development of a shear zone in brittle rock subjected to direct shear", Int. J. Rock Mech. Min. Sci., 45, 1335-1346. https://doi.org/10.1016/j.ijrmms.2008.01.019
  9. Cundall, P. (1971), "A computer model for simulating progressive large scale movements in blocky rock systems", Proceedings of The Symposium of International Society of Rock Mechanics, 1, Nancy, France.
  10. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solid., 22, 1205-1218.
  11. Farquharson, J., Heap, M.J., Varley, N.R., Baud, P. and Reuschle, T. (2015), "Permeability and porosity relationships of edificeforming andesites: A combined field and laboratory study", J. Volcanol. Geotherm. Res., 297, 52-68. https://doi.org/10.1016/j.jvolgeores.2015.03.016
  12. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
  13. Haeri, H. (2015), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  14. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.
  15. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  16. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  17. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  18. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  19. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  20. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  21. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinica, 5, 555-566.
  22. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
  23. Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Solid Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
  24. Heap, M.J., Xu, T. and Chen, C. (2014), "The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma", Bull. Volcanol., 76, 1-15.
  25. Hosseini_Nasab, H. and Fatehi Marji, M. (2007), "A semi-infinite higher-order displacement discontinuity method and its application to the quasistatic analysis of radial cracks produced by blasting", J. Mech. Mater. Struct., 2(3), 439-458. https://doi.org/10.2140/jomms.2007.2.439
  26. Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007
  27. Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Minneapolis.
  28. Ji, Y., Baud, P., Vajdova, V. and Wong, T.F. (2012), "Characterization of pore geometry of Indiana limestone in relation to mechanical compaction", Oil Gas Sci. Technol. D'IFP Energ. Nouvelles. 67, 753-775. https://doi.org/10.2516/ogst/2012051
  29. Ji, Y., Hall, S.A., Baud, P. and Wong, T.F. (2015), "Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation", Geophys. J. Int., 200, 701-719. https://doi.org/10.1093/gji/ggu414
  30. Kequan, Y.U. and Lu, Z. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength mortar", Comput. Mortar, 15(2), 102-111.
  31. Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, 22(1), 93-100. https://doi.org/10.12989/CAC.2018.22.1.093
  32. Kim, H.M., Lee, J.W., Yazdani, M., Tohidi, E., Nejati, H.R. and Park, E.S. (2018), "E.-S coupled viscous fluid flow and joint deformation analysis for grout injection in a rock joint", Rock Mech. Rock Eng., 51(2), 627-638. https://doi.org/10.1007/s00603-017-1339-3
  33. Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 33-46.
  34. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  35. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  36. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  37. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  38. Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Impact Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
  39. Luquot, L., Hebert, V. and Rodriguez, O. (2016), "Calculating structural and geometrical parameters by laboratory measurements and X-ray microtomography: a comparative study applied to a limestone sample before and after a dissolution experiment", Solid Earth, 7, 441-456. https://doi.org/10.5194/se-7-441-2016
  40. Ma, T., Wu, B., Fu, J., Zhang, Q. and Chen, P. (2017b), "Fracture pressure prediction for layered formations with anisotropic rock strengths", J. Nat. Gas Sci. Eng., 38, 485-503. https://doi.org/10.1016/j.jngse.2017.01.002
  41. Ma, T., Zhang, Q.B., Chen, P., Yang, C. and Zhao, J. (2017a), "Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths", J. Petrol. Sci. Eng., 149, 393-408. https://doi.org/10.1016/j.petrol.2016.10.050
  42. Marji, M.F. (2014), "Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method", Int. J. Solid. Struct., 51(9), 1716-1736. https://doi.org/10.1016/j.ijsolstr.2014.01.022
  43. Marji, M.F., Hosseini-Nasab, H. and Kohsary, A.H. (2007), "A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis", JP J. Solid. Struct., 1(1), 61-91.
  44. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  45. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance mortar using response surface method", Comput. Mortar., 17(4), 33-39.
  46. Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review", Comput. Concrete, 20(2), 155-164. https://doi.org/10.12989/CAC.2017.20.2.155
  47. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of $SiO_2$ nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171(20), 672-679. https://doi.org/10.1016/j.conbuildmat.2018.03.224
  48. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  49. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  50. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4), 167-181.
  51. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  52. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
  53. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
  54. Rozenbaum, O. and Rolland du Roscat, S. (2014), "Representative elementary volume assessment of three-dimensional x-ray microtomography images of heterogeneous materials, Application to limestones", Phys. Rev. E, 89, 53304, https://doi.org/10.1103/PhysRevE.89.053304
  55. Sammis, C.G. and Ashby, M.F., (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall., 34, 511-526. https://doi.org/10.1016/0001-6160(86)90087-8
  56. Sarfarazi, V. and Shubert, W. (2016b), "Sliding phenomena in intermittent rock joint", Periodica Polyechnica Civil Eng., 5, 1-10.
  57. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  58. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical Simulation of the Process of Fracture of Echelon Rock Joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  59. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016a), "The effect of non-persistent joints on sliding direction if rock slopes, Comput. Concerete, 7, 723-737.
  60. Schaefer, L.N., Kendrick, J.E., Oommen, T., Lavallee, Y. and Chigna, G. (2015), "Geomechanical rock properties of a basaltic volcano", Volcanol., 3, 29.
  61. Schmitt, M., Halisch, M., Muller, C. and Fernandes, C.P. (2016), "Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography", Solid Earth, 7, 285-300. https://doi.org/10.5194/se-7-285-2016
  62. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  63. Simmons, G. and Richter, D. (1976), "Microcracks in rocks", Chem. Phys. Rock. Min., 76(2), 105-137.
  64. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  65. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  66. Wang, J., Xie, L.Z., Xie, H.P., Ren, L., He, B., Li, C.B., Yang, Z.P. and Gao, C. (2016a), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36, 1120-1129. https://doi.org/10.1016/j.jngse.2016.03.046
  67. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
  68. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  69. Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using Numerical Manifold method", Constr. Build. Mater., 72, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.082
  70. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 44-60.
  71. Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms", Int. J. Fract., 189, 1-32. https://doi.org/10.1007/s10704-014-9959-z
  72. Zhang, S.W., Shou, K.J., Xian, X.F., Zhou, J.P. and Liu, G.J., (2018), "Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests", Tunn. Underg. Space Technol., 71, 298-308. https://doi.org/10.1016/j.tust.2017.08.031
  73. Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80. https://doi.org/10.1007/s10704-013-9876-6
  74. Zhou, J.R., Wei, J., Yang, T.H., Zhu, W.C., Li, L.C. and Zhang, P.H. (2018), "Damage analysis of rock mass coupling joints, water and microseismicity", Tunn. Underg. Space Technol., 71, 366-381. https://doi.org/10.1016/j.tust.2017.09.006
  75. Zhu, W., Baud, P., Vinciguerra, S. and Wong, T.F. (2011), "Micromechanics of brittle faulting and cataclastic flow in Alban Hills Tuff", J. Geophy. Res.: Solid Earth, 10(6), 56-70.

Cited by

  1. A proposal for an approach for meso scale modeling for concrete based on rigid body spring model vol.27, pp.3, 2018, https://doi.org/10.12989/cac.2021.27.3.283