DOI QR코드

DOI QR Code

Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets

  • 투고 : 2018.09.04
  • 심사 : 2018.10.30
  • 발행 : 2018.11.30

초록

Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.

키워드

참고문헌

  1. Abdul Rehman, Syed A., Kristariyanto Yosua, A., Choi, S.Y., Nkosi, P.J., Weidlich, S., Labib, K., Hofmann, K., and Kulathu, Y. (2016). MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol. Cell 63, 146-155. https://doi.org/10.1016/j.molcel.2016.05.009
  2. Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., and Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375. https://doi.org/10.1038/nature13418
  3. Bondeson, D.P., Mares, A., Smith, I.E.D., Ko, E., Campos, S., Miah, A.H., Mulholland, K.E., Routly, N., Buckley, D.L., Gustafson, J.L., et al. (2015). Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611-U120. https://doi.org/10.1038/nchembio.1858
  4. Boselli, M., Lee, B.H., Robert, J., Prado, M.A., Min, S.W., Cheng, C., Silva, M.C., Seong, C., Elsasser, S., Hatle, K.M., et al. (2017). An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J. Biol. Chem. 292, 19209-19225. https://doi.org/10.1074/jbc.M117.815126
  5. Buckley, D.L., Raina, K., Darricarrere, N., Hines, J., Gustafson, J.L., Smith, I.E., Miah, A.H., Harling, J.D., and Crews, C.M. (2015). HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem. Biol. 10, 1831-1837. https://doi.org/10.1021/acschembio.5b00442
  6. Buhimschi, A.D., Armstrong, H.A., Toure, M., Jaime-Figueroa, S., Chen, T.L., Lehman, A.M., Woyach, J.A., Johnson, A.J., Byrd, J.C., and Crews, C.M. (2018). Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation. Biochemistry-Us 57, 3564-3575. https://doi.org/10.1021/acs.biochem.8b00391
  7. Burslem, G.M., Smith, B.E., Lai, A.C., Jaime-Figueroa, S., McQuaid, D.C., Bondeson, D.P., Toure, M., Dong, H.Q., Qian, Y.M., Wang, J., et al. (2018). The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chemical Biology 25, 67-77. https://doi.org/10.1016/j.chembiol.2017.09.009
  8. Chan, A.I., McGregor, L.M., and Liu, D.R. (2015). Novel selection methods for DNA-encoded chemical libraries. Curr. Opin. Chem. Biol. 26, 55-61. https://doi.org/10.1016/j.cbpa.2015.02.010
  9. Chan, C.H., Morrow, J.K., Li, C.F., Gao, Y., Jin, G., Moten, A., Stagg, L.J., Ladbury, J.E., Cai, Z., Xu, D., et al. (2013). Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556-568. https://doi.org/10.1016/j.cell.2013.06.048
  10. Chauhan, D., Tian, Z., Nicholson, B., Kumar, K.G., Zhou, B., Carrasco, R., McDermott, J.L., Leach, C.A., Fulcinniti, M., Kodrasov, M.P., et al. (2012). A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345-358. https://doi.org/10.1016/j.ccr.2012.08.007
  11. Chen, J., Dexheimer, T.S., Ai, Y., Liang, Q., Villamil, M.A., Inglese, J., Maloney, D.J., Jadhav, A., Simeonov, A. and Zhuang, Z. (2011). Selective and cell-active inhibitors of the USP1/ UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol. 18, 1390-1400. https://doi.org/10.1016/j.chembiol.2011.08.014
  12. Chu, T.T., Gao, N., Li, Q.Q., Chen, P.G., Yang, X.F., Chen, Y.X., Zhao, Y.F., and Li, Y.M. (2016). Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. Cell Chem. Biol. 23, 453-461. https://doi.org/10.1016/j.chembiol.2016.02.016
  13. Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79-87. https://doi.org/10.1038/nrm1552
  14. Clague, M.J., Barsukov, I., Coulson, J.M., Liu, H., Rigden, D.J., and Urbe, S. (2013). Deubiquitylases from genes to organism. Physiol. Rev. 93, 1289-1315. https://doi.org/10.1152/physrev.00002.2013
  15. Coleman, K.G., and Crews, C.M. (2018). Proteolysis-Targeting Chimeras: Harnessing the Ubiquitin-Proteasome System to Induce Degradation of Specific Target Proteins. Annual Review of Cancer Biology 2, 41-58. https://doi.org/10.1146/annurev-cancerbio-030617-050430
  16. Colland, F., Formstecher, E., Jacq, X., Reverdy, C., Planquette, C., Conrath, S., Trouplin, V., Bianchi, J., Aushev, V.N., Camonis, J., et al. (2009). Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells. Mol. Cancer Ther. 8, 2286-2295. https://doi.org/10.1158/1535-7163.MCT-09-0097
  17. Crew, A.P., Raina, K., Dong, H., Qian, Y., Wang, J., Vigil, D., Serebrenik, Y.V., Hamman, B.D., Morgan, A., Ferraro, C., et al. (2018). Identification and Characterization of Von Hippel-Lindau-Recruiting Proteolysis Targeting Chimeras (PROTACs) of TANK-Binding Kinase 1. J. Med. Chem. 61, 583-598. https://doi.org/10.1021/acs.jmedchem.7b00635
  18. D'Arcy, P., Brnjic, S., Olofsson, M.H., Fryknas, M., Lindsten, K., De Cesare, M., Perego, P., Sadeghi, B., Hassan, M., Larsson, R., et al. (2011). Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 17, 1636-1640. https://doi.org/10.1038/nm.2536
  19. de Poot, S.A.H., Tian, G., and Finley, D. (2017). Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. J. Mol. Biol. 429, 3525-3545. https://doi.org/10.1016/j.jmb.2017.09.015
  20. Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434. https://doi.org/10.1146/annurev.biochem.78.101807.093809
  21. Dexheimer, T.S., Rosenthal, A.S., Luci, D.K., Liang, Q., Villamil, M.A., Chen, J., Sun, H., Kerns, E.H., Simeonov, A., Jadhav, A., et al. (2014). Synthesis and structure-activity relationship studies of N-benzyl-2-phenylpyrimidin-4-amine derivatives as potent USP1/UAF1 deubiquitinase inhibitors with anticancer activity against nonsmall cell lung cancer. J. Med. Chem. 57, 8099-8110. https://doi.org/10.1021/jm5010495
  22. Farshi, P., Deshmukh, R.R., Nwankwo, J.O., Arkwright, R.T., Cvek, B., Liu, J., and Dou, Q.P. (2015). Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opin. Ther. Pat. 25, 1191-1208. https://doi.org/10.1517/13543776.2015.1056737
  23. Finley, D. (2009). Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annual Review of Biochemistry 78, 477-513. https://doi.org/10.1146/annurev.biochem.78.081507.101607
  24. Finley, D., and Chau, V. (1991). Ubiquitination. Annu. Rev. Cell. Biol. 7, 25-69. https://doi.org/10.1146/annurev.cb.07.110191.000325
  25. Fraile, J.M., Quesada, V., Rodriguez, D., Freije, J.M., and Lopez-Otin, C. (2012). Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373-2388. https://doi.org/10.1038/onc.2011.443
  26. Gavory, G., O'Dowd, C.R., Helm, M.D., Flasz, J., Arkoudis, E., Dossang, A., Hughes, C., Cassidy, E., McClelland, K., Odrzywol, E., et al. (2018). Discovery and characterization of highly potent and selective allosteric USP7 inhibitors. Nat. Chem. Biol. 14, 118-125. https://doi.org/10.1038/nchembio.2528
  27. Gopinath, P., Ohayon, S., Nawatha, M., and Brik, A. (2016). Chemical and semisynthetic approaches to study and target deubiquitinases. Chem. Soc. Rev. 45, 4171-4198. https://doi.org/10.1039/C6CS00083E
  28. Gustafson, J.L., Neklesa, T.K., Cox, C.S., Roth, A.G., Buckley, D.L., Tae, H.S., Sundberg, T.B., Stagg, D.B., Hines, J., McDonnell, D.P., et al. (2015). Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. Angew. Chem. Int. Ed. Engl. 54, 9659-9662. https://doi.org/10.1002/anie.201503720
  29. Harrigan, J.A., Jacq, X., Martin, N.M., and Jackson, S.P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17, 57-77.
  30. Henning, R.K., Varghese, J.O., Das, S., Nag, A., Tang, G., Tang, K., Sutherland, A.M., and Heath, J.R. (2016). Degradation of Akt using protein-catalyzed capture agents. J. Pept. Sci. 22, 196-200. https://doi.org/10.1002/psc.2858
  31. Hines, J., Gough, J.D., Corson, T.W., and Crews, C.M. (2013). Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. P. Natl. Acad. Sci. USA 110, 8942-8947. https://doi.org/10.1073/pnas.1217206110
  32. Huang, X., and Dixit, V.M. (2016). Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484-498. https://doi.org/10.1038/cr.2016.31
  33. Itoh, Y., Ishikawa, M., Naito, M., and Hashimoto, Y. (2010). Protein Knockdown Using Methyl Bestatin-Ligand Hybrid Molecules: Design and Synthesis of Inducers of Ubiquitination-Mediated Degradation of Cellular Retinoic Acid-Binding Proteins. J. Am. Chem. Soc. 132, 5820-5826. https://doi.org/10.1021/ja100691p
  34. Itoh, Y., Kitaguchi, R., Ishikawa, M., Naito, M., and Hashimoto, Y. (2011). Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem. 19, 6768-6778. https://doi.org/10.1016/j.bmc.2011.09.041
  35. Jiang, Y., Deng, Q., Zhao, H., Xie, M., Chen, L., Yin, F., Qin, X., Zheng, W., Zhao, Y., and Li, Z. (2018). Development of Stabilized Peptide-Based PROTACs against Estrogen Receptor alpha. ACS Chem. Biol. 13, 628-635. https://doi.org/10.1021/acschembio.7b00985
  36. Kapuria, V., Peterson, L.F., Fang, D., Bornmann, W.G., Talpaz, M., and Donato, N.J. (2010). Deubiquitinase Inhibition by Small-Molecule WP1130 Triggers Aggresome Formation and Tumor Cell Apoptosis. Cancer Res. 70, 9265-9276. https://doi.org/10.1158/0008-5472.CAN-10-1530
  37. Kategaya, L., Di Lello, P., Rouge, L., Pastor, R., Clark, K.R., Drummond, J., Kleinheinz, T., Lin, E., Upton, J.P., Prakash, S., et al. (2017). USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature 550, 534-538. https://doi.org/10.1038/nature24006
  38. Kluge, A.F., Lagu, B.R., Maiti, P., Jaleel, M., Webb, M., Malhotra, J., Mallat, A., Srinivas, P.A., and Thompson, J.E. (2018). Novel highly selective inhibitors of ubiquitin specific protease 30 (USP30) accelerate mitophagy. Bioorg. Med. Chem. Letters 28, 2655-2659. https://doi.org/10.1016/j.bmcl.2018.05.013
  39. Komander, D., Clague, M.J., and Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550-563. https://doi.org/10.1038/nrm2731
  40. Komander, D., and Rape, M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203-229. https://doi.org/10.1146/annurev-biochem-060310-170328
  41. Lai, A.C., and Crews, C.M. (2017). Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101-114. https://doi.org/10.1038/nrd.2016.211
  42. Lai, A.C., Toure, M., Hellerschmied, D., Salami, J., Jaime-Figueroa, S., Ko, E., Hines, J., and Crews, C.M. (2016). Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Angew. Chem. Int. Ed. Engl. 55, 807-810. https://doi.org/10.1002/anie.201507634
  43. Lamberto, I., Liu, X., Seo, H.S., Schauer, N.J., Iacob, R.E., Hu, W., Das, D., Mikhailova, T., Weisberg, E.L., Engen, J.R., et al. (2017). Structure-Guided Development of a Potent and Selective Non-covalent Active-Site Inhibitor of USP7. Cell Chem. Biol. 24, 1490-1500 e1411. https://doi.org/10.1016/j.chembiol.2017.09.003
  44. Lee, B.H., Lee, M.J., Park, S., Oh, D.C., Elsasser, S., Chen, P.C., Gartner, C., Dimova, N., Hanna, J., Gygi, S.P., et al. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179-U163. https://doi.org/10.1038/nature09299
  45. Lee, B.H., Lu, Y., Prado, M.A., Shi, Y., Tian, G., Sun, S., Elsasser, S., Gygi, S.P., King, R.W., and Finley, D. (2016). USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532, 398-401. https://doi.org/10.1038/nature17433
  46. Li, J., Yakushi, T., Parlati, F., Mackinnon, A.L., Perez, C., Ma, Y., Carter, K.P., Colayco, S., Magnuson, G., Brown, B., et al. (2017). Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol. 13, 486-493. https://doi.org/10.1038/nchembio.2326
  47. Liang, J.R., Martinez, A., Lane, J.D., Mayor, U., Clague, M.J., and Urbe, S. (2015). USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. Embo. Rep. 16, 618-627. https://doi.org/10.15252/embr.201439820
  48. Liu, N., Liu, C., Li, X., Liao, S., Song, W., Yang, C., Zhao, C., Huang, H., Guan, L., Zhang, P., et al. (2014a). A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases. Sci. Rep. 4, 5240.
  49. Liu, N.N., Li, X.F., Huang, H.B., Zhao, C., Liao, S.Y., Yang, C.S., Liu, S.T., Song, W.B., Lu, X.Y., Lan, X.Y., et al. (2014b). Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget 5, 5453-5471.
  50. Liu, Y.C., Lashuel, H.A., Choi, S., Xing, X.C., Case, A., Ni, J., Yeh, L.A., Cuny, G.D., Stein, R.L., and Lansbury, P.T. (2003). Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837-846. https://doi.org/10.1016/j.chembiol.2003.08.010
  51. Long, M.J., Gollapalli, D.R., and Hedstrom, L. (2012). Inhibitor mediated protein degradation. Chem. Biol. 19, 629-637. https://doi.org/10.1016/j.chembiol.2012.04.008
  52. Lu, M., Liu, T., Jiao, Q., Ji, J., Tao, M., Liu, Y., You, Q., and Jiang, Z. (2018). Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem.146, 251-259. https://doi.org/10.1016/j.ejmech.2018.01.063
  53. Manasanch, E.E., and Orlowski, R.Z. (2017). Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417. https://doi.org/10.1038/nrclinonc.2016.206
  54. Mistry, H., Hsieh, G., Buhrlage, S.J., Huang, M., Park, E., Cuny, G.D., Galinsky, I., Stone, R.M., Gray, N.S., D'Andrea, A.D., et al. (2013). Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol. Cancer Ther. 12, 2651-2662. https://doi.org/10.1158/1535-7163.MCT-13-0103-T
  55. Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., Raina, K., Holley, S.A., and Crews, C.M. (2011). Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538-543. https://doi.org/10.1038/nchembio.597
  56. Neklesa, T.K., Winkler, J.D., and Crews, C.M. (2017). Targeted protein degradation by PROTACs. Pharmacol. Ther. 174, 138-144. https://doi.org/10.1016/j.pharmthera.2017.02.027
  57. Ohoka, N., Nagai, K., Hattori, T., Okuhira, K., Shibata, N., Cho, N., and Naito, M. (2014). Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis. 5.
  58. Popovic, D., Vucic, D., and Dikic, I. (2014). Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242-1253. https://doi.org/10.1038/nm.3739
  59. Raina, K., Lu, J., Qian, Y.M., Altieri, M., Gordon, D., Rossi, A.M.K., Wang, J., Chen, X., Dong, H.Q., Siu, K., et al. (2016). PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. P. Natl. Acad. Sci. USA 113, 7124-7129. https://doi.org/10.1073/pnas.1521738113
  60. Rask-Andersen, M., Almen, M.S., and Schioth, H.B. (2011). Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579-590. https://doi.org/10.1038/nrd3478
  61. Reverdy, C., Conrath, S., Lopez, R., Planquette, C., Atmanene, C., Collura, V., Harpon, J., Battaglia, V., Vivat, V., Sippl, W., et al. (2012). Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem. Biol. 19, 467-477. https://doi.org/10.1016/j.chembiol.2012.02.007
  62. Richardson, P.G., Sonneveld, P., Schuster, M.W., Irwin, D., Stadtmauer, E.A., Facon, T., Harousseau, J.L., Ben-Yehuda, D., Lonial, S., Goldschmidt, H., et al. (2005). Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487-2498. https://doi.org/10.1056/NEJMoa043445
  63. Robb, C.M., Contreras, J.I., Kour, S., Taylor, M.A., Abid, M., Sonawane, Y.A., Zahid, M., Murry, D.J., Natarajan, A., and Rana, S. (2017). Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun. (Camb.) 53, 7577-7580. https://doi.org/10.1039/C7CC03879H
  64. Rodriguez-Gonzalez, A., Cyrus, K., Salcius, M., Kim, K., Crews, C.M., Deshaies, R.J., and Sakamoto, K.M. (2008). Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27, 7201-7211. https://doi.org/10.1038/onc.2008.320
  65. Ross, C.A., and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10-17. https://doi.org/10.1038/nm1066
  66. Sacco, J.J., Coulson, J.M., Clague, M.J., and Urbe, S. (2010). Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62, 140-157.
  67. Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., and Deshaies, R.J. (2001). Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. P. Natl. Acad. Sci. USA 98, 8554-8559. https://doi.org/10.1073/pnas.141230798
  68. Salami, J., and Crews, C.M. (2017). Waste disposal-An attractive strategy for cancer therapy. Science 355, 1163-1167. https://doi.org/10.1126/science.aam7340
  69. Schiedel, M., Herp, D., Hammelmann, S., Swyter, S., Lehotzky, A., Robaa, D., Olah, J., Ovadi, J., Sippl, W., and Jung, M. (2018). Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J. Med. Chem. 61, 482-491. https://doi.org/10.1021/acs.jmedchem.6b01872
  70. Schneekloth, A.R., Pucheault, M., Tae, H.S., and Crews, C.M. (2008). Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904-5908. https://doi.org/10.1016/j.bmcl.2008.07.114
  71. Schneekloth, J.S., Jr., Fonseca, F.N., Koldobskiy, M., Mandal, A., Deshaies, R., Sakamoto, K., and Crews, C.M. (2004). Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748-3754. https://doi.org/10.1021/ja039025z
  72. Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R.S., Qiu, S., Nikolovska-Coleska, Z., Ding, K., Wang, G., Chen, J., et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA 105, 3933-3938. https://doi.org/10.1073/pnas.0708917105
  73. Stewart, A.K., Rajkumar, S.V., Dimopoulos, M.A., Masszi, T., Spicka, I., Oriol, A., Hajek, R., Rosinol, L., Siegel, D.S., Mihaylov, G.G., et al. (2015). Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 372, 142-152. https://doi.org/10.1056/NEJMoa1411321
  74. Tian, X., Isamiddinova, N.S., Peroutka, R.J., Goldenberg, S.J., Mattern, M.R., Nicholson, B., and Leach, C. (2011). Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay. Drug Dev. Technol. 9, 165-173. https://doi.org/10.1089/adt.2010.0317
  75. Tomoshige, S., Naito, M., Hashimoto, Y., and Ishikawa, M. (2015). Degradation of HaloTag-fused nuclear proteins using bestatin-HaloTag ligand hybrid molecules. Org. Biomol. Chem. 13, 9746-9750. https://doi.org/10.1039/C5OB01395J
  76. Turnbull, A.P., Ioannidis, S., Krajewski, W.W., Pinto-Fernandez, A., Heride, C., Martin, A.C.L., Tonkin, L.M., Townsend, E.C., Buker, S.M., Lancia, D.R., et al. (2017). Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 550, 481-486. https://doi.org/10.1038/nature24451
  77. Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004). In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2. 303, 844-848. https://doi.org/10.1126/science.1092472
  78. Wang, X., D'Arcy, P., Caulfield, T.R., Paulus, A., Chitta, K., Mohanty, C., Gullbo, J., Chanan-Khan, A., and Linder, S. (2015). Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem. Biol. Drug Des. 86, 1036-1048. https://doi.org/10.1111/cbdd.12571
  79. Wang, X., Feng, S., Fan, J., Li, X., Wen, Q., and Luo, N. (2016a). New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol. 116, 200-209. https://doi.org/10.1016/j.bcp.2016.07.017
  80. Wang, X., Mazurkiewicz, M., Hillert, E.K., Olofsson, M.H., Pierrou, S., Hillertz, P., Gullbo, J., Selvaraju, K., Paulus, A., Akhtar, S., et al. (2016b). The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep-Uk 6, 26979. https://doi.org/10.1038/srep26979
  81. Weathington, N.M., and Mallampalli, R.K. (2014). Emerging therapies targeting the ubiquitin proteasome system in cancer. J. Clin. Invest. 124, 6-12. https://doi.org/10.1172/JCI71602
  82. Weinstock, J., Wu, J., Cao, P., Kingsbury, W.D., McDermott, J.L., Kodrasov, M.P., McKelvey, D.M., Suresh Kumar, K.G., Goldenberg, S.J., Mattern, M.R., et al. (2012). Selective Dual Inhibitors of the Cancer-Related Deubiquitylating Proteases USP7 and USP47. ACS Med. Chem. Lett. 3, 789-792. https://doi.org/10.1021/ml200276j
  83. Wilkinson, K.D. (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245-1256. https://doi.org/10.1096/fasebj.11.14.9409543
  84. Winter, G.E., Buckley, D.L., Paulk, J., Roberts, J.M., Souza, A., DhePaganon, S., and Bradner, J.E. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376-1381. https://doi.org/10.1126/science.aab1433
  85. Xie, T., Lim, S.M., Westover, K.D., Dodge, M.E., Ercan, D., Ficarro, S.B., Udayakumar, D., Gurbani, D., Tae, H.S., Riddle, S.M., et al. (2014). Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 10, 1006-1012. https://doi.org/10.1038/nchembio.1658
  86. Yang, K., Song, Y., Xie, H., Wu, H., Wu, Y.T., Leisten, E.D., and Tang, W. (2018). Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg. Med. Chem. Lett. 28, 2493-2497. https://doi.org/10.1016/j.bmcl.2018.05.057
  87. Yue, W., Chen, Z., Liu, H., Yan, C., Chen, M., Feng, D., Yan, C., Wu, H., Du, L., Wang, Y., et al. (2014). A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 24, 482-496. https://doi.org/10.1038/cr.2014.20
  88. Zengerle, M., Chan, K.H., and Ciulli, A. (2015). Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4. Acs. Chem. Biol. 10, 1770-1777. https://doi.org/10.1021/acschembio.5b00216
  89. Zhang, C., Han, X.R., Yang, X., Jiang, B., Liu, J., Xiong, Y., and Jin, J. (2018). Proteolysis Targeting Chimeras (PROTACs) of Anaplastic Lymphoma Kinase (ALK). Eur. J. Med. Chem. 151, 304-314. https://doi.org/10.1016/j.ejmech.2018.03.071
  90. Zhou, B., Hu, J., Xu, F., Chen, Z., Bai, L., Fernandez-Salas, E., Lin, M., Liu, L., Yang, C.Y., Zhao, Y., et al. (2018). Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression. J. Med. Chem. 61, 462-481. https://doi.org/10.1021/acs.jmedchem.6b01816
  91. Zhou, P. (2005). Targeted protein degradation. Curr. Opin. Chem. Biol. 9, 51-55. https://doi.org/10.1016/j.cbpa.2004.10.012

피인용 문헌

  1. The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development vol.20, pp.11, 2019, https://doi.org/10.3390/ijms20112667
  2. PROTACs: great opportunities for academia and industry vol.4, pp.1, 2018, https://doi.org/10.1038/s41392-019-0101-6
  3. Significance of Selective Protein Degradation in the Development of Novel Targeted Drugs and Its Implications in Cancer Therapy vol.3, pp.6, 2018, https://doi.org/10.1002/adtp.201900210
  4. Deubiquitination Reactions on the Proteasome for Proteasome Versatility vol.21, pp.15, 2018, https://doi.org/10.3390/ijms21155312
  5. Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT vol.476, pp.2, 2018, https://doi.org/10.1007/s11010-020-03932-2
  6. Traceless Staudinger ligation enabled parallel synthesis of proteolysis targeting chimera linker variants vol.57, pp.8, 2018, https://doi.org/10.1039/d0cc05395c
  7. The Ubiquitin Proteasome System in Genome Stability and Cancer vol.13, pp.9, 2018, https://doi.org/10.3390/cancers13092235
  8. Potential of E3 Ubiquitin Ligases in Cancer Immunity: Opportunities and Challenges vol.10, pp.12, 2018, https://doi.org/10.3390/cells10123309