DOI QR코드

DOI QR Code

Pre-deposition of iron-based adsorbents on the removal of humic acid using ultrafiltration and membrane fouling

  • Tian, Hailong (School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture) ;
  • Sun, Lihua (Key Laboratory of Urban Stormwater System & Water Environment, Beijing University of Civil Engineering and Architecture) ;
  • Duan, Xi (School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture) ;
  • Chen, Xueru (Beijing General Municipal Engineering Design & Research Institute Co., Ltd) ;
  • Yu, Tianmin (Beijing Harbour Real Estate Development Co., Ltd) ;
  • Feng, Cuimin (Key Laboratory of Urban Stormwater System & Water Environment, Beijing University of Civil Engineering and Architecture)
  • Received : 2016.08.21
  • Accepted : 2018.08.20
  • Published : 2018.11.25

Abstract

The effect of three iron-based adsorbents pre-depositing on ultrafiltration membrane for humic acid (HA) removal and membrane fouling was investigated. The result showed that pre-depositing adsorbents on membrane could not only reduce membrane fouling but also enhance HA removal. The flux was related to the adsorbent dosage and the optimal dosage for pre-deposition was $35.0g/m^2$. The dissolved organic carbon (DOC) removal of HA was 38.3%, 67.3% and 41.1% respectively when pre-deposited $35.0g/m^2$ $FeO_xH_y$, $MnFe_2O_4$ and $Fe_3O_4$ on membrane. Different adsorption effect of adsorbents on HA contributed to increasing of the flux at different level. Zeta potential of three adsorbents all decreased after adsorbed HA. The adsorption capacity of the three adsorbents was $FeO_xH_y$ > $MnFe_2O_4$ > $Fe_3O_4$. Atomic Force Microscopy (AFM) measurement showed the thickness of pre-deposition layers formed by different adsorbents was different. The scanning electron microscope (SEM) detection showed the morphology and compactness of pre-deposition layers formed by different adsorbents was different.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Amy, G. (2008), "Fundamental understanding of organic matter fouling of membranes", Desalination, 231(1), 44-51. https://doi.org/10.1016/j.desal.2007.11.037
  2. And, L.C. and Sengupta, A.K. (2005), "Arsenic removal using polymer-supported hydrated iron(iii) oxide nanoparticles: role of donnan membrane effect", Environ. Sci. Technol. 39(17), 6508. https://doi.org/10.1021/es050175e
  3. Aoustin, E., Schafer, A.I., Fane, A.G. and Waite, T.D. (2001), "Ultrafiltration of natural organic matter", Separat. Purif. Technol., 22-23(1-3), 63-78. https://doi.org/10.1016/S1383-5866(00)00143-X
  4. Buffle, J. and van Leeuwen, H.P. (1992), Environmental Particles. Lewis Publishers, Florida, U.S.A.
  5. Carroll, T., King, S., Gray, S.R., Bolto, B.A. and Booker, N.A. (2000), "The fouling of microfiltration membranes by nom after coagulation treatment", Water Res., 34(11), 2861-2868. https://doi.org/10.1016/S0043-1354(00)00051-8
  6. Cornell, R.M. and Schwertman, U. (2003), The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Second ed, Wiley, U.S.A.
  7. Galjaard, G., Buijs, P., Beerendonk, E., Schoonenberg, F. and Schippers, J.C. (2001), "Pre-coating (epce(R)) uf membranes for direct treatment of surface water", Desalination, 139(01), 305-316. https://doi.org/10.1016/S0011-9164(01)00324-1
  8. Ha, T.W., Choo, K.H. and Choi, S.J. (2004), "Effect of chlorine on adsorption/ultrafiltration treatment for removing natural organic matter in drinking water", J. Colloid and Interface Sci., 274(2), 587-593. https://doi.org/10.1016/j.jcis.2004.03.010
  9. Haberkamp, J., Ruhl, A.S., Ernst, M. and Jekel, M. (2007), "Impact of coagulation and adsorption on doc fractions of secondary effluent and resulting fouling behaviour in ultrafiltration", Water Res., 41(17), 3794-3802. https://doi.org/10.1016/j.watres.2007.05.029
  10. Hajdu, A., Szekeres, M., Toth, I.Y., Bauer, R.A., Mihaly, J., Zupko, I. and Tombacz, E. (2012), "Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media", Colloids Surfaces B Biointerfaces, 94(6), 242-249. https://doi.org/10.1016/j.colsurfb.2012.01.042
  11. He, Z., Liu, R., Liu, H. and Qu, J. (2015), "Adsorption of Sb(III) and Sb(V) on Freshly Prepared Ferric Hydroxide (FeOxHy)", Environ. Eng. Sci., 32(2), 95. https://doi.org/10.1089/ees.2014.0155
  12. Huang, X., Leal, M. and Li, Q. (2008), "Degradation of natural organic matter by $TiO_2$ photocatalytic oxidation and its effect on fouling of low-pressure membranes", Water Res., 42(4-5), 1142-1150. https://doi.org/10.1016/j.watres.2007.08.030
  13. Humbert, H., Gallard, H., Jacquemet, V. and Croue, J.P. (2007), "Combination of coagulation and ion exchange for the reduction of uf fouling properties of a high doc content surface water", Water Res., 41(17), 3803-3811. https://doi.org/10.1016/j.watres.2007.06.009
  14. Hwang, B.F. and Jaakkola, J.J. (2003), "Water chlorination and birth defects: A systematic review and meta-analysis", Arch. Environ. Health, 58(2), 83-91. https://doi.org/10.3200/AEOH.58.2.83-91
  15. Hyung, H., Lee, S., Yoon, J. and Lee, C. (2000), "Effect of preozonation on flux and water quality in ozonationultrafiltration hybrid system for water treatment", Ozone Sci. Eng., 22(6), 637-652. https://doi.org/10.1080/01919510009408804
  16. Illes, E. and Tombacz, E. (2006), "The effect of humic acid adsorption on ph-dependent surface charging and aggregation of magnetite nanoparticles", J. Colloid Interface Sci., 295(1), 115-123. https://doi.org/10.1016/j.jcis.2005.08.003
  17. Kabsch-Korbutowicz, M. (2005), "Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/ultrafiltration process", Desalination, 185(1-3), 327-333. https://doi.org/10.1016/j.desal.2005.02.083
  18. Kumpulainen, S., Kammer, F.V.D. and Hofmann, T. (2008), "Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters", Water Res., 42(8-9), 2051-2060. https://doi.org/10.1016/j.watres.2007.12.015
  19. Lin, C.J., Cheng, A.C., Lin, Y.F., Lee, D.J. and Guo, W.M. (2012), "Dense membranes precoated with aluminium tridecamer ($Al_{13}$) for water treatment", Desalination, 284(2), 349-352. https://doi.org/10.1016/j.desal.2011.11.012
  20. Ma, B., Yu, W., Liu, H. and Qu, J. (2014), "Effect of low dosage of coagulant on the ultrafiltration membrane performance in feedwater treatment", Water Res., 51(6), 277-283. https://doi.org/10.1016/j.watres.2013.10.069
  21. Mavrov, V., Chmiel, H., Kluth, J., Meier, J., Heinrich, F., Ames, P., Backes, K. and Usner, P. (1998), "Comparative study of different mf and uf membranes for drinking water production", Desalination, 117(1-3), 189-196. https://doi.org/10.1016/S0011-9164(98)00093-9
  22. Mozia, S. and Tomaszewska, M. (2004), "Treatment of surface water using hybrid processes - Adsorption on PAC and ultrafiltration", Desalination, 162(04), 23-31. https://doi.org/10.1016/S0011-9164(04)00023-2
  23. Mozia, S., Tomaszewska, M. and Morawski, A.W. (2005), "Studies on the effect of humic acids and phenol on adsorptionultrafiltration process performance", Water Res., 39(2-3), 501-509. https://doi.org/10.1016/j.watres.2004.10.012
  24. Nieuwenhuijsen, M.J. (2005), "Adverse reproductive health effects of exposure to chlorination disinfection by products", Global Nest, 7(1), 128-144.
  25. Peng, X., Luan, Z. and Zhang, H. (2006), "Montmorillonite-Cu(II)/Fe(III) oxides magnetic material as adsorbent for removal of humic acid and its thermal regeneration", Chemosphere, 63(2), 300-306. https://doi.org/10.1016/j.chemosphere.2005.07.019
  26. Qin, X., Liu, F., Wang, G. and Weng, L. (2012), "Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography", J. Separat. Sci., 35(24), 3455-3460. https://doi.org/10.1002/jssc.201200414
  27. Saito, T., Koopal, L.K., van Riemsdijk, W.H., Nagasaki, S. and Tanakat, S. (2004), "Adsorption of humic acid on goethite: Isotherms, charge adjustments, and potential profiles", Langmuir, 20(3), 689-700. https://doi.org/10.1021/la034806z
  28. Sharp, E.L., Jarvis, P., Parsons, S.A. and Jefferson, B. (2006), "The impact of zeta potential on the physical properties of ferric - NOM flocs", Environ. Sci. Technol., 40(12), 3934-3940. https://doi.org/10.1021/es051919r
  29. Sutzkover-Gutman, I., Hasson, D. and Semiat, R. (2010), "Humic substances fouling in ultrafiltration processes", Desalination, 261(3), 218-231. https://doi.org/10.1016/j.desal.2010.05.008
  30. Woods, G.C., Simpson, M.J., Pautler, B.G., Lamoureux, S.F., Lafreniere, M.J. and Simpson, A.J. (2011), "Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian high arctic", Geochimica Et Cosmochimica Acta, 75(22), 7226-7241. https://doi.org/10.1016/j.gca.2011.08.013
  31. Xia, S., Nan, J., Liu, R. and Li, G. (2004), "Study of drinking water treatment by ultrafiltration of surface water and its application to china", Desalination, 170(1), 41-47. https://doi.org/10.1016/j.desal.2004.03.014
  32. Xiao, F., Xiao, P., Zhang, W.J. and Wang, D.S. (2013), "Identification of key factors affecting the organic fouling on low-pressure ultrafiltration membranes", J. Membr. Sci., 447(22), 144-152. https://doi.org/10.1016/j.memsci.2013.07.040
  33. Ye, M., Zhang, H., Wei, Q., Lei, H., Yang, F. and Zhang, X. (2006), "Study on the suitable thickness of a PAC-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment", Desalination, 194(1), 108-120. https://doi.org/10.1016/j.desal.2005.11.005
  34. Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B.S. and Chu, B. (2006), "High flux ultrafiltration membranes based on electrospun nanofibrous pan scaffolds and chitosan coating", Polymer, 47(7), 2434-2441. https://doi.org/10.1016/j.polymer.2006.01.042
  35. Zularisam, A.W., Ismail, A.F. and Salim, R. (2006), "Behaviours of natural organic matter in membrane filtration for surface water treatment - A review", Desalination, 194(1-3), 211-231. https://doi.org/10.1016/j.desal.2005.10.030