References
- Anilan, T., Uzlu, E., Kankal, M. and Yuksek, O. (2018), "The estimation of flood quantiles in ungauged sites using teachinglearning based optimization and artificial bee colony algorithms", Scientia Iranica, 25(2), 1-8.
- Baki, O.T. (2016), "Modeling of biochemical oxygen demand on wastewater treatment plant by using different artificial intelligence methods: Antalya Hurma Wastewater Treatment Plant example", M.Sc. Dissertation, Karadeniz Technical University, Institute of Science and Technology, Trabzon.
- Baki, O.T. and Aras, E. (2018), "Atiksu Aritma Tesislerinde Biyokimyasal Oksijen Ihtiyacinin Farkli Regresyon Modelleriyle Tahmin Edilmesi", Eng. Sci., 13(2), 96-105. https://doi.org/10.3969/j.issn.1009-1742.2011.02.017
- Bayram, A., Uzlu, E., Kankal, M. and Dede, T. (2015), "Modeling stream dissolved oxygen concentration using teaching-learning based optimization algorithm", Environ. Earth Sci., 73(10), 6565-6576. https://doi.org/10.1007/s12665-014-3876-3
- Bayram, A. and Kankal, M. (2015), "Artificial neural network modeling of dissolved oxygen concentrations in a Turkish watershed", Pol. J. Environ. Stud., 24(4), 1507-1515
- Chapman, D. (1992), Water Quality Assessments, Chapman and Hall, London, United Kingdom.
- Civelekoglu, G. (2006), "The modeling of treatment processes with artificial intelligence and multistatistical methods", Ph.D. Dissertation, Suleyman Demirel University, Isparta.
- Cote, M., Grandjean, B.P.A., Lessard, P. and Thibault, J. (1995), "Dynamic modeling of the activated sludge process: Improving prediction using neural networks", Wat. Res. 29(4), 995-1004. https://doi.org/10.1016/0043-1354(95)93250-W
- Dede, T. and Ayvaz, Y. (2015), "Combined size and shape optimization of structures with a new meta-heuristic algorithm", Appl. Soft Comput. 28, 250-258. https://doi.org/10.1016/j.asoc.2014.12.007
- Dede, T. and Togan, V. (2015), "A teaching learning based optimization for truss structures with frequency constraints", Struct. Eng. Mech., 53(4), 833-845. https://doi.org/10.12989/sem.2015.53.4.833
- Dogan, E., Ates, A., Yilmaz, E.C. and Eren, B. (2008), "Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand", Environ. Progress, 27(4), 439-446. https://doi.org/10.1002/ep.10295
- Dogan, E., Koklu, R., and Sengorur, B. (2007), "Estimation of biological oxygen demand using artificial neural network", International Earthquake Symposium, Kocaeli, Turkey, October.
- Fu, C. and Poch, M. (1998), "Fuzzy model and decision of COD control for an activated sludge process", Fuzzy Sets Syst., 93, 281-292. https://doi.org/10.1016/S0165-0114(96)00208-4
- Huang, M., Ma, Y., Wan, J. and Chen, X. (2015), "A sensorsoftware based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process", Appl. Soft Comput., 27, 1-10. https://doi.org/10.1016/j.asoc.2014.10.034
- Huang, Y.C. and Wang, X.Z. (1999), "Application of fuzzy causal network to wastewater treatment plants", Chem. Eng. Sci., 54, 2731-2738. https://doi.org/10.1016/S0009-2509(98)00421-7
- Kankal, M. and Uzlu, E. (2017), "Neural network approach with teaching-learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey", Neural Comput. Appl., 28, 737-747.
- Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical Report-TR06; Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey.
- Karakaya, K. (2012), "Artificial Intelligence-Based Modeling for Prediction of Biogas Production Rate from Full-Scale Anaerobic Sludge Digestion Reactors: Neural Networks and Fuzzy Logic Applications", M.Sc. Dissertation, Yildiz Technical University, Institute of Science and Technology, Istanbul.
- Kermani, M.Z. and Scholz, M. (2013), "Modeling of Dissolved Oxygen Applying Stepwise Regression and a Template-Based Fuzzy Logic System", J. Environ. Eng., 140(1), 69-76.
- Kisi, O., Ozkan, C., Akay, B. (2012), "Modeling dischargesediment relationship using neural networks with artificial bee colony algorithm", J. Hydrol. 428, 94-103.
- Krishna, D. and Sree, R. (2014), "Artificial Neural Network (ANN) Approach for modeling chromium (VI) Adsorption from aqueous solution using a borasus flabellifer coir powder", J. Appl. Sci. Eng., 12(3), 177-192.
- Lee, D.S., Jeon, C.O., Park, J.M. and Chang, K.S. (2002), "Hybrid neural network modeling of a full scale industrial wastewater treatment process", Biotech. Bioeng., 78, 125-135.
- Mjalli, F.S., Al-Asheh, S. and Alfadala, H.E. (2006), "Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance", J. Environ. Manage., 83, 329-338.
- Moreno-Alfonso, N. and Redondo, C.F. (2001), "Intelligent wastewater treatment with neural-networks", Water Policy, 3, 267-271. https://doi.org/10.1016/S1366-7017(01)00071-X
- Nacar, S., Hinis, M.A. and Kankal, M. (2018), "Forecasting daily streamflow discharges using various neural network models and training algorithms", KSCE J. Civil Eng., 22(9), 3676-3685. https://doi.org/10.1007/s12205-017-1933-7
- Nadiri, A.A., Shokri, S., Tsai, F.T.C. and Moghaddam, A.A. (2018), "Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model", J. Cleaner Product., 180, 539-549. https://doi.org/10.1016/j.jclepro.2018.01.139
- Nas, S.S. (2001), "Biyokimyasal oksijen ihtiyaci parametrelerinin biyolojik aritma unitelerinin boyutlandirilmasindaki etkileri", the 3th National Symposium of Urban Infrastructure Proceeding Book, Eskisehir-Turkey, November.
- Ozel, O. (2011), "Modeling Performance of Hurma Wastewater Treatment Plant", M.Sc. Dissertation, Cukurova University, Institute of Science and Technology, Adana.
- Ozturk, H.T., Turkeli, E. and Durmus, A. (2016), "Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms", Comput. Concrete, 17, 435-453. https://doi.org/10.12989/cac.2016.17.4.435
- Pu, H.C. and Hung, Y.T. (2007), "Artificial neutral networks for predicting municipal activated sludge wastewater treatment plant performance", J. Environ. Studies, 48(2), 97-116,
- Ragot, J., Grapin, G., Chatellier, P. and Colin, F. (2001), "Modeling of a wastewater treatment plant. A multi-model representation", Environmetrics, 12(7), 599-611. https://doi.org/10.1002/env.460
- Safarinejadian, B., Gharibzadeh, B. and Rakhshan, M. (2014), "An optimized model of electricity price forecasting in the electricity market based on fuzzy timeseries", Syst. Sci. Control Eng., 2(1), 677-683, https://doi.org/10.1080/21642583.2014.970733
- Sezer, M. (2007), "Approximating of BOD Parameter from COD Parameter Using Artificial Neural Networks", M.Sc. Dissertation, Sakarya University, Institute of Science and Technology, Sakarya.
- Sinan, R.K., (2010), "Estimation of Primary Treatment and Biological Treatment Effluent Parameters by Artificial Neural Networks in Domestic Wastewater Treatment Plants", M.Sc. Dissertation, Selcuk University, Institute of Science and Technology, Konya.
- State Planning Organization, (2001), VIII. Five-Year Development Plan, Publication No: DPT:2555, 571.
- Tay, J. and Zhang, X. (2000), "A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems", Wat. Res., 34(11), 2849-2860. https://doi.org/10.1016/S0043-1354(00)00057-9
- Togan, V., (2012), "Design of planar steel frames using teaching-learning based optimization", Eng. Struct. 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035
- Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using teaching-learning-based optimization", KSCE J. Civil Eng., 21(6), 2281-2288. https://doi.org/10.1007/s12205-017-0076-1
- Uzlu, E., Akpinar, A., Ozturk, H.T., Nacar, S. and Kankal, M. (2014a), "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey", Energy, 69, 638-647 https://doi.org/10.1016/j.energy.2014.03.059
- Uzlu, E., Kankal, M., Akpinar, A. and Dede, T. (2014b), "Estimates of energy consumption in Turkey using neural networks with the teaching learning-based optimization algorithm", Energy, 75, 295-303 https://doi.org/10.1016/j.energy.2014.07.078
- Uzlu, E., Komurcu, M.I., Kankal, M., Dede, T. and Ozturk, H.T. (2014c), "Prediction of berm geometry using a set of laboratory tests combined with teaching-learning-based optimization and artificial bee colony algorithms", Appl. Ocean Res., 48, 103-113. https://doi.org/10.1016/j.apor.2014.08.002
- Van Dongen, G. and Geuens, L. (1998), "Multivariate time series analysis for design and operation of a biological wastewater treatment plant", Wat. Res., 32(3), 691-700. https://doi.org/10.1016/S0043-1354(97)00249-2
- Verma, A.K. and Singh, T.N. (2013), "Prediction of water quality from simple field parameters", Environ Earth Sci., 69, 821-829. https://doi.org/10.1007/s12665-012-1967-6
- Yilmaz, B., Aras, E., Nacar, S. and Kankal, M. (2018), "Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models", Sci. Total Environ., 639, 826-840. https://doi.org/10.1016/j.scitotenv.2018.05.153
- Yilmaz, E.C. and Dogan, E. (2008), "Artificial Neural Networks Application for Modeling of Wastewater Treatment Plant Performance", Electron. Lett. Sci. Eng., 4(1), 1-9.
- Yoo, C.K. and Lee, I. (2001), "Wastewater quality modeling by hybrid GA-Fuzzy model", Asian Waterqual 2001, Fukuoka, Japan, September.
- Yoo, C.K., Choi, S.W. and Lee, I. (2002), "Adaptive modeling and classification of the secondary settling tank", Korean J. Chem. Eng., 19(3), 377-382. https://doi.org/10.1007/BF02697143
- Yoo, C.K., Vanrolleghem, P.A. and Lee, I.B. (2003), "Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plant", J. Biotechnol., 105, 135-163. https://doi.org/10.1016/S0168-1656(03)00168-8