DOI QR코드

DOI QR Code

Sensitivity analysis and Taguchi application in vacuum membrane distillation

  • Upadhyaya, Sushant (Department of Chemical Engineering, Malaviya National Institute of Technology) ;
  • Singh, Kailash (Department of Chemical Engineering, Malaviya National Institute of Technology) ;
  • Chaurasia, Satyendra Prasad (Department of Chemical Engineering, Malaviya National Institute of Technology) ;
  • Baghel, Rakesh (Department of Chemical Engineering, Malaviya National Institute of Technology) ;
  • Singh, Jitendra Kumar (Department of Chemical Engineering, JK Lakshmipat University) ;
  • Dohare, Rajeev Kumar (Department of Chemical Engineering, Malaviya National Institute of Technology)
  • Received : 2017.02.11
  • Accepted : 2018.07.23
  • Published : 2018.11.25

Abstract

In this work, desalination experiments were performed on vacuum membrane distillation (VMD). Process parameters such as feed flow rate, vacuum degree on permeate side, feed bulk temperature and feed salt concentration were optimized using sensitivity analysis and Taguchi method. The optimum values of process parameters were found to be 2 lpm of feed flow rate, $60^{\circ}C$ of feed bulk temperature, 5.5 kPa of permeate-side pressure and 5000 ppm of salt concentration. The permeate flux at these conditions was obtained as $26.6kg/m^2{\cdot}hr$. The rejection of salt in permeate was found to be 99.7%. The percent contribution of various process parameters using ANOVA results indicated that the most important parameter is feed bulk temperature with its contribution of 95%. The ANOVA results indicate that the percent contribution of permeate pressure gets increased to 5.384% in the range of 2 to 7 kPa as compared to 0.045% in the range of 5.5 to 7 kPa.

Keywords

References

  1. Abu-Zeid, M.A.E.R., Zhang, Y., Dong, H., Zhang, L., Chen, H.L. and Hou, L. (2015), "A comprehensive review of vacuum membrane distillation technique", Desalination, 356, 1-14. https://doi.org/10.1016/j.desal.2014.10.033
  2. Alkhudhiri, A., Darwish, N. and Hilal, N. (2012), "Membrane distillation: A comprehensive review", Desalination, 287, 2-18. https://doi.org/10.1016/j.desal.2011.08.027
  3. Banat, F., Al-Rub, F.A. and Bani-Melhem, K. (2003), "Desalination by vacuum membrane distillation: Sensitivity analysis", Separat. Purif. Technol., 33(1), 75-87. https://doi.org/10.1016/S1383-5866(02)00221-6
  4. Bandini, S., Saavedra, A. and Sarti, G.C. (1997), "Vacuum membrane distillation: Experiments and modeling", AIChE J., 43(2), 398-408. https://doi.org/10.1002/aic.690430213
  5. Bandini, S. and Sarti, G.C. (1999), "Heat and mass transport resistances in vacuum membrane distillation per drop", AIChE J., 45(7), 1422-1433. https://doi.org/10.1002/aic.690450707
  6. Bouguecha, S., Chouikh, R. and Dhahbi, M. (2003), "Numerical study of the coupled heat and mass transfer in membrane distillation* 1", Desalination, 152(1-3), 245-252. https://doi.org/10.1016/S0011-9164(02)01070-6
  7. Chaurasia, S.P., Upadhyaya, S. and Singh, K. (2013), "Water desalination by vacuum membrane distillation", AIChE Annual Meeting, San Francisco, U.S.A., November.
  8. Criscuoli, A., Bafaro, P. and Drioli, E. (2013), "Vacuum membrane distillation for purifying waters containing arsenic", Desalination, 323, 17-21. https://doi.org/10.1016/j.desal.2012.08.004
  9. El-Bourawi, M.S., Ding, Z., Ma, R. and Khayet, M. (2006), "A framework for better understanding membrane distillation separation process", J.Membr. Sci., 285(1-2), 4-29. https://doi.org/10.1016/j.memsci.2006.08.002
  10. Izquierdo-Gil, M.A., Fernandez-Pineda, C. and Lorenz, M.G. (2008), "Flow rate influence on direct contact membrane distillation experiments: Different empirical correlations for Nusselt number", J. Membr. Sci., 321(2), 356-363. https://doi.org/10.1016/j.memsci.2008.05.018
  11. Izquierdo-Gil, M.A. and Jonsson, G. (2003), "Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD)", J. Membr. Sci., 214(1), 113-130. https://doi.org/10.1016/S0376-7388(02)00540-9
  12. Khayet, M. (2011), "Membranes and theoretical modeling of membrane distillation: A review", Adv. Colloid Interface Sci., 164(1), 56-88. https://doi.org/10.1016/j.cis.2010.09.005
  13. Kuram, E., Tasci, E., Altan, A.I., Medar, M.M., Yilmaz, F. and Ozcelik, B. (2013), "Investigating the effects of recycling number and injection parameters on the mechanical properties of glass-fibre reinforced nylon 6 using Taguchi method", Mater. Design, 49, 139-150. https://doi.org/10.1016/j.matdes.2013.02.027
  14. Lawson, K.W. and Lloyd, D.R. (1997), "Membrane distillation", J. Membr. Sci., 124(1), 1-25. https://doi.org/10.1016/S0376-7388(96)00236-0
  15. Lovineh, S.G., Asghari, M. and Rajaei, B. (2013), "Numerical simulation and theoretical study on simultaneous effects of operating parameters in vacuum membrane distillation", Desalination, 314, 59-66. https://doi.org/10.1016/j.desal.2013.01.005
  16. Mehat, N.M. and Kamaruddin, S. (2011), "Investigating the effects of injection molding parameters on the mechanical properties of recycled plastic parts using the Taguchi method", Mater. Manufact. Processes, 26(2), 202-209. https://doi.org/10.1080/10426914.2010.529587
  17. Mengual, J.I., Khayet, M. and Godino, M.P. (2004), "Heat and mass transfer in vacuum membrane distillation", J. Heat Mass Transfer, 47(4), 865-875. https://doi.org/10.1016/j.ijheatmasstransfer.2002.09.001
  18. Mohammadi, T. and Safavi, M.A. (2009), "Application of Taguchi method in optimization of desalination by vacuum membrane distillation", Desalination, 249(1), 83-89. https://doi.org/10.1016/j.desal.2009.01.017
  19. Naidu, G., Choi, Y., Jeong, S., Hwang, T.M. and Vigneswaran, S. (2014), "Experiments and modeling of a vacuum membrane distillation for high saline water", J. Industrial Eng. Chem., 20(4), 2174-2183. https://doi.org/10.1016/j.jiec.2013.09.048
  20. Oktem, H., Erzurumlu, T. and Uzman, I. (2007), "Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part", Mater. Design, 28(4), 1271-1278. https://doi.org/10.1016/j.matdes.2005.12.013
  21. Pangarkar, B.L., Parjane, S.B., Abhang, R.M. and Guddad, M. (2010), "The heat and mass transfer phenomena in vacuum membrane distillation for desalination", J. Chem. Biomolecular Eng., 3(1), 33-38.
  22. Roy Ranjit, K. (1990), A Primer on Taguchi Method, Van Nostrad Reinhold, New York, U.S.A.
  23. Shim, S.M., Lee, J.G. and Kim, W.S. (2014), "Performance simulation of a multi-VMD desalination process including the recycle flow", Desalination, 338, 39-48. https://doi.org/10.1016/j.desal.2013.12.009
  24. Soni, V., Abildskov, J., Jonsson, G. and Gani, R. (2008), "Modeling and analysis of vacuum membrane distillation for the recovery of volatile aroma compounds from black currant juice", J. Membr. Sci., 320(1), 442-455. https://doi.org/10.1016/j.memsci.2008.04.025
  25. Upadhyaya, S., Singh, K., Chaurasia, S.P., Dohare, R.K. and Agarwal, M. (2016a), "Mathematical and CFD modeling of vacuum membrane distillation for desalination", Desalination Water Treat., 57(26), 11956-11971. https://doi.org/10.1080/19443994.2015.1048306
  26. Upadhyaya, S., Singh, K., Chaurasia, S.P., Dohare, R.K. and Agarwal, M. (2016b), "Recovery and development of correlations for heat and mass transfer in vacuum membrane distillation for desalination", Desalination Water Treat., 57(55), 26886-26898. https://doi.org/10.1080/19443994.2016.1189245
  27. Varma, A., Morbidelli, M. and Wu, H. (2005), Parametric Sensitivity in Chemical Systems, Cambridge University Press, United Kingdom.
  28. Walton, J., Lu, H., Turner, C., Solis, S. and Hein, H. (2004), "Solar and waste heat desalination by membrane distillation", Desalination and Water Purification Research and Development Program Report No. 81, Agreement No. 98-FC-81-0048, U.S. Department of the Interior, Environmental Services Division, Denver, U.S.A.
  29. Xu, Z., Pan, Y. and Yu, Y. (2009), "CFD simulation on membrane distillation of NaCl solution", Frontiers of Chemical Engineering in China, 3(3), 293-297. https://doi.org/10.1007/s11705-009-0204-7