DOI QR코드

DOI QR Code

UV-assisted surface modification of polyethersulfone (PES) membrane using TiO2 nanoparticles

  • Singh, Shruti (Department of Chemical Engineering, Institute of Chemical Technology) ;
  • Karwa, Vinay (Department of Chemical Engineering, Institute of Chemical Technology) ;
  • Marathe, K.V. (Department of Chemical Engineering, Institute of Chemical Technology)
  • 투고 : 2017.09.21
  • 심사 : 2018.07.01
  • 발행 : 2018.11.25

초록

In this research commercial polyethersulfone (PES) membrane was modified using $TiO_2$ nanoparticles (P-25 Degussa) and further irradiated using UV light to overcome the hydrophobicity and fouling nature of the membrane. Further the membranes were characterized using SEM and FTIR. Contact angle measurements study confirmed the hydrophilic tendency of the modified membrane by decreasing the contact angle from $73^{\circ}$ to $20.28^{\circ}$. The modified membranes showed higher flux and better anti-fouling properties as compared to the unmodified counterparts. The optimum conditions were found to be 0.5 wt% $TiO_2$ loading with 60 min membrane immersion and 10 min UV light illumination. The effect of different pH conditions of feed was analysed. Real wastewater filtration experiments also indicated better performance of modified membranes as opposed to neat PES membranes.

키워드

참고문헌

  1. Akbari, A., Desclaux, S., Rouch, J.C., Aptel, P. and Remigy, J.C. (2006), "New UV-photografted nanofiltration membranes for the treatment of colored textile dye effluents", J. Memb. Sci., 286(1-2), 342-350. https://doi.org/10.1016/j.memsci.2006.10.024
  2. Banerjee, S., Dionysiou, D.D. and Pillai, S.C. (2015), "Selfcleaning applications of $TiO_2$ by photo-induced hydrophilicity and photocatalysis", Appl. Catal. B Environ., 176, 396-428.
  3. Barakat, M.A. and Schmidt, E. (2010), "Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater", Desalination, 256(1-3), 90-93. https://doi.org/10.1016/j.desal.2010.02.008
  4. Belfer, S., Fainchtain, R., Purinson, Y. and Kedem, O. (2000), "Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled", J. Memb. Sci., 172(1-2),113-124. https://doi.org/10.1016/S0376-7388(00)00316-1
  5. Chan, K.H., Wong, E.T., Irfan, M., Idris, A., and Yusof, N.M. (2015), "Enhanced Cu(II) rejection and fouling reduction through fabrication of PEG-PES nanocomposite ultrafiltration membrane with PEG-coated cobalt doped iron oxide nanoparticle", J. Taiwan Inst. Chem. Eng., 47, 50-58. https://doi.org/10.1016/j.jtice.2014.09.033
  6. Ciardelli, G., Corsi, L. and Marcucci, M. (2000), "Membrane separation for wastewater reuse in the textile industry", Resour. Conserv. Recycl., 31(2), 189-197. https://doi.org/10.1016/S0921-3449(00)00079-3
  7. Dong, L.X, Yang, H.W, Liu, S.T, Wang, X.M and Xie, Y.F. (2015), "Fabrication and anti-biofouling properties of alumina and zeolite nanoparticle embedded ultrafiltration membranes", Desalination, 365, 70-78. https://doi.org/10.1016/j.desal.2015.02.023
  8. Emeline, A.V., Rudakova, A.V., Sakai, M., Murakami, T. and Fujishima, A. (2013), "Factors affecting uv-induced superhydrophilic conversion of a $TiO_2$ surface", J. Phys. Chem. C., 117(23), 12086-12092. https://doi.org/10.1021/jp400421v
  9. Gao, Y., Hu, M. and Mi, B. (2014), "Membrane surface modification with $TiO_2$-graphene oxide for enhanced photocatalytic performance", J. Memb. Sci., 455, 349-356. https://doi.org/10.1016/j.memsci.2014.01.011
  10. Garcia-Ivars, J., Alcaina-Miranda, M.I., Iborra-Clar, M.I., Mendoza-Roca, J.A. and Pastor-Alcaniz, L. (2014), "Enhancement in hydrophilicity of different polymer phaseinversion ultrafiltration membranes by introducing PEG/Al2O3 nanoparticles", Sep. Purif. Technol., 128, 45-57. https://doi.org/10.1016/j.seppur.2014.03.012
  11. Garcia-Ivars, J., Iborra-Clar, M.I., Alcaina-Miranda, M.I., Mendoza-Roca, J.A. and Pastor-Alcaniz, L. (2016), "Surface photomodification of flat-sheet PES membranes with improved antifouling properties by varying UV irradiation time and additive solution pH", Chem. Eng. J., 283, 231-242. https://doi.org/10.1016/j.cej.2015.07.078
  12. Gupta, S.M. and Tripathi, M. (2011), "A review of $TiO_2$ nanoparticles", Chinese Sci. Bull., 56(16), 1639-1657. https://doi.org/10.1007/s11434-011-4476-1
  13. Hillis, P., Padley, M.B., Powell, N.I. and Gallagher, P.M. (1998), "Effects of backwash conditions on out-to-in membrane microfiltration", Desalination, 118(1-3), 197-204. https://doi.org/10.1016/S0011-9164(98)00128-3
  14. Huisman, I. H., Pradanos, P. and Hernandez, A. (2000), "The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration", J. Membr. Sci., 179(1-2), 79-90. https://doi.org/10.1016/S0376-7388(00)00501-9
  15. Jamshidi Gohari, R., Halakoo, E., Nazri, N.A.M., Lau, W.J., Matsuura, T. and Ismail, A.F. (2014), "Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles", Desalination, 335(1), 87-95. https://doi.org/10.1016/j.desal.2013.12.011
  16. Jyothi, M.S., Nayak, V., Padaki, M., Geetha Balakrishna, R. and Soontarapa, K. (2016), "Aminated polysulfone/$TiO_2$ composite membranes for an effective removal of Cr(VI)", Chem. Eng. J., 283(VI), 1494-1505. https://doi.org/10.1016/j.cej.2015.08.116
  17. Kilduff, J.E., Mattaraj, S., Pieracci, J.P. and Belfort, G. (2000), "Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter", Desalination, 132(1-3), 133-142. https://doi.org/10.1016/S0011-9164(00)00142-9
  18. Kovacs, I., Beszedes, S., Kertesz, S., Vereb, G., Hodur, C., Papp, I.Z., Kukovecz, A. and Laszlo, Z. (2017), "Investigation of titanium-dioxide coatings on membrane filtration properties", Stud. Univ. Babes-Bolyai Chem., 62(1), 249-259.
  19. Kwak, S.Y., Kim, S.H. and Kim, S.S. (2001), "Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of $TiO_2$ nanoparticle self-assembled aromatic polyamide thin-filmcomposite (TFC) membrane", Environ. Sci. Technol., 35(11), 2388-2394. https://doi.org/10.1021/es0017099
  20. Laera, G., Chong, M.N., Jin, B. and Lopez, A. (2011), "An integrated MBR-$TiO_2$ photocatalysis process for the removal of Carbamazepine from simulated pharmaceutical industrial effluent", Bioresour. Technol., 102(13), 7012-7015. https://doi.org/10.1016/j.biortech.2011.04.056
  21. Lee, H., Amy, G., Cho, J., Yoon, Y., Moon, S.H. and Kim, I.S. (2001), "Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter", Water Res., 35(14), 3301-3308. https://doi.org/10.1016/S0043-1354(01)00063-X
  22. Lee, N., Amy, G. and Lozier, J. (2005), "Understanding natural organic matter fouling in low-pressure membrane filtration", Desalination, 178(1-3 SPEC. ISS.), 85-93. https://doi.org/10.1016/j.desal.2004.11.030
  23. Li, X., Li, J., Fang, X., Bakzhan, K., Wang, L. and Van der Bruggen, B. (2016), "A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled $TiO_2$ nanoparticles", J. Colloid Interface Sci., 469, 164-176. https://doi.org/10.1016/j.jcis.2016.02.002
  24. Luo, M.L., Zhao, J.Q., Tang, W. and Pu, C.S. (2005), "Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of $TiO_2$ nanoparticles", Appl. Surf. Sci., 249(1-4), 76-84. https://doi.org/10.1016/j.apsusc.2004.11.054
  25. Madaeni, S.S. and Ghaemi, N. (2007), "Characterization of selfcleaning RO membranes coated with $TiO_2$ particles under UV irradiation", J. Memb. Sci., 303(1-2), 221-233. https://doi.org/10.1016/j.memsci.2007.07.017
  26. Madaeni, S.S., Ghaemi, N., Alizadeh, A. and Joshaghani, M. (2011), "Applied surface science influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes", Appl. Surf. Sci., 257(14), 6175-6180. https://doi.org/10.1016/j.apsusc.2011.02.026
  27. Mahvi, H., Bazrafshan, E. and Jahed, G.R. (2005), "Evaluation of COD determination by ISO, 6060 method, comparing with standard method (5220, B)", Pakistan J. Biol. Sci., 8(6), 892-894. https://doi.org/10.3923/pjbs.2005.892.894
  28. Maximous, N., Nakhla, G., Wong, K. and Wan, W. (2010), "Optimization of Al2O3/PES membranes for wastewater filtration", Sep. Purif. Technol., 73(2), 294-301. https://doi.org/10.1016/j.seppur.2010.04.016
  29. Miller, D., Dreyer, D., Bielawski, C., Paul, D. and Freeman, B. (2016), "Surface modification of water purification membranes: A review", Angew. Chemie Int. Ed., 56(17), 4662-4711. https://doi.org/10.1002/anie.201601509
  30. Moghadam, M.T., Lesage, G., Mohammadi, T., Mericq, J.P., Mendret, J., Heran, M., Faur, C., Brosillon, S., Hemmati, M. and Naeimpoor, F. (2015), "Improved antifouling properties of $TiO_2$/PVDF nanocomposite membranes in UV-coupled ultrafiltration", J. Appl. Polym. Sci., 132(21).
  31. Moghimifar, V., Livari, A.E., Raisi, A. and Aroujalian, A. (2015), "Enhancing the antifouling property of polyethersulfone ultrafiltration membranes using NaX zeolite and titanium oxide nanoparticles", RSC Adv., 5(i), 55964-55976. https://doi.org/10.1039/C5RA06986F
  32. Mohamad, S.H., Idris, M.I. and Abdullah, H.Z. (2013), "Preparation of polyethersulfone ultrafiltration membrane surface coated with $TiO_2$ nanoparticles and irradiated under UV light", Key Eng. Mater., 594-595, 877-881. https://doi.org/10.4028/www.scientific.net/KEM.594-595.877
  33. Prince, J.A., Bhuvana, S., Boodhoo, K.V.K., Anbharasi, V. and Singh, G. (2014), "Synthesis and characterization of PEG-Ag immobilized PES hollow fiber ultrafiltration membranes with long lasting antifouling properties", J. Memb. Sci., 454, 538-548. https://doi.org/10.1016/j.memsci.2013.12.050
  34. Rahaman, M.S., Therien-Aubin, H., Ben-Sasson, M., Ober, C.K., Nielsen, M. and Elimelech, M. (2014), "Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes", J. Mater. Chem. B, 2(12), 1724. https://doi.org/10.1039/c3tb21681k
  35. Rahimpour, A., Jahanshahi, M., Mollahosseini, A. and Rajaeian, B. (2012), "Structural and performance properties of UVassisted $TiO_2$ deposited nano-composite PVDF / SPES membranes", 285, 31-38. https://doi.org/10.1016/j.desal.2011.09.026
  36. Rahimpour, A. and Madaeni, S.S. (2007). "Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties", J. Memb. Sci., 305(1-2), 299-312. https://doi.org/10.1016/j.memsci.2007.08.030
  37. Rahimpour, A., Madaeni, S.S., Taheri, A.H. and Mansourpanah, Y. (2008), "Coupling $TiO_2$ nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes", J. Memb. Sci., 313(1-2), 158-169. https://doi.org/10.1016/j.memsci.2007.12.075
  38. Sang, L., Zhao, Y. and Burda, C. (2014), "$TiO_2$ nanoparticles as functional building blocks", Chem. Rev., 114(19), 9283-9318. https://doi.org/10.1021/cr400629p
  39. Strathmann, H. (1981), "Membrane separation processes", J. Memb. Sci., 9(1-2), 121-189. https://doi.org/10.1016/S0376-7388(00)85121-2
  40. Su, Y., Deng, L., Zhang, N., Wang, X. and Zhu, X. (2009), "Photocatalytic degradation of C.I. Acid Blue 80 in aqueous suspensions of titanium dioxide under sunlight", React. Kinet. Catal. Lett., 98(2), 227-240. https://doi.org/10.1007/s11144-009-0059-4
  41. Tavakolmoghadam, M., Mohammadi, T., Hemmati, M. and Naeimpour, F. (2014), "Surface modification of PVDF membranes by sputtered $TiO_2$: Fouling reduction potential in membrane bioreactors", Desalin. Water Treat., 3994(January 2016), 1-11.
  42. Vatanpour, V. and Kavian, M. (2016). "Synergistic effect of silica nanoparticles in the matrix of a poly(ethylene glycol) diacrylate coating layer for the surface modification of polyamide nanofiltration membranes", J. Appl. Polym. Sci., 133(33).
  43. Vatanpour, V., Madaeni, S.S., Khataee, A.R., Salehi, E., Zinadini, S. and Monfared, H.A. (2012), "$TiO_2$ embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance", Desalination, 292, 19-29. https://doi.org/10.1016/j.desal.2012.02.006
  44. Vieira, M., Tavares, C.R., Bergamasco, R. and Petrus, J.C.C. (2001), "Application of ultrafiltration-complexation process for metal removal from pulp and paper industry wastewater", J. Memb. Sci., 194(2), 273-276. https://doi.org/10.1016/S0376-7388(01)00525-7
  45. Xu, P., Drewes, J.E., Kim, T.U., Bellona, C. and Amy, G. (2006), "Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications", J. Memb. Sci., 279(1-2), 165-175. https://doi.org/10.1016/j.memsci.2005.12.001
  46. Yang, T., Sang, S., Zhao, X., Zhang, Z. and Rao, H. (2015), "Surface modification of $TiO_2$ nanoparticles and preparation of $TiO_2$/PDMS hybrid membrane materials", Polym. Compos., 38(8), 1541-1548. https://doi.org/10.1002/pc.23721
  47. Zhang, G., Lu, S., Zhang, L., Meng, Q., Shen, C. and Zhang, J. (2013), "Novel polysulfone hybrid ultrafiltration membrane prepared with $TiO_2$-g-HEMA and its antifouling characteristics", J. Memb. Sci., 436, 163-173. https://doi.org/10.1016/j.memsci.2013.02.009
  48. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H. and Beygzadeh, M. (2014), "Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated $Fe_3O_4$ nanoparticles", Desalination, 349, 145-154. https://doi.org/10.1016/j.desal.2014.07.007
  49. Zondervan, E. and Roffel, B. (2007), "Evaluation of different cleaning agents used for cleaning ultra filtration membranes fouled by surface water", J. Memb. Sci., 304(1-2), 40-49. https://doi.org/10.1016/j.memsci.2007.06.041