DOI QR코드

DOI QR Code

Analytical determination of shear correction factor for Timoshenko beam model

  • Moghtaderi, Saeed H. (Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University) ;
  • Faghidian, S. Ali (Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University) ;
  • Shodja, Hossein M. (Department of Civil Engineering, Sharif University of Technology)
  • 투고 : 2018.04.27
  • 심사 : 2018.10.23
  • 발행 : 2018.11.25

초록

Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the nonuniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution for the elasticity field is then employed to introduce two shear correction factors consistent with the Cowper's and energy approaches. The mathematical form of the proposed shear correction factors are then simplified and compared with the results available in the literature over an extended range of Poisson's and aspect ratios. The proposed shear correction factors do not exhibit implausible issue of negative values and do not result in numerical instabilities too. Based on the comprehensive discussion on the shear correction factors, a piecewise definition of shear correction factor is introduced for rectangular cross-sections having excellent agreement with the numerical results in the literature for both shallow and deep cross-sections.

키워드

참고문헌

  1. Aghdam, M.M., Shahmansouri, N. and Mohammadi, M. (2012), "Extended Kantorovich method for static analysis of moderately thick functionally graded sector plates", Math. Comput. Simul., 86, 118-130. DOI: http://dx.doi.org/10.1016/j.matcom.2010.07.029
  2. Ahouel, M., Houari, M.S.A., Bedia, E.A.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. DOI: http://dx.doi.org/10.12989/scs.2018.20.5.963
  3. Akbas, S.D. (2018), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. DOI: http://dx.doi.org/10.12989/scs.2018.26.6.733
  4. Baksa, A. and Ecsedi, I. (2009), "A note on the pure bending of nonhomogeneous prismatic bars", Int. J. Mech. Eng. Educ., 37(2), 118-129. DOI: http://dx.doi.org/10.7227/IJMEE.37.2.4
  5. Balduzzi, G., Morganti, S., Auricchio, F. and Reali, A. (2017), "Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation", Comput. Math. Appl., 74, 1531-1541. DOI: http://dx.doi.org/10.1016/j.camwa.2017.04.025
  6. Barretta, R. (2012), "On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory", Int. J. Solids Struct., 49(21), 3038-3046. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2012.06.003
  7. Barretta, R. (2013a), "Analogies between Kirchhoff plates and Saint-Venant beams under torsion", Acta. Mech., 224(12), 2955-2964. DOI: http://dx.doi.org/10.1007/s00707-013-0912-4
  8. Barretta, R. (2013b), "On Cesaro-Volterra method in orthotropic Saint-Venant beam", J. Elast., 112(2), 233-253. DOI: http://dx.doi.org/10.1007/s10659-013-9432-7
  9. Barretta, R. (2013c), "On stress function in Saint-Venant beams", Meccanica, 48(7), 1811-1816. DOI: http://dx.doi.org/10.1007/s11012-013-9747-2
  10. Barretta, R. (2014), "Analogies between Kirchhoff plates and Saint-Venant beams under flexure", Acta. Mech., 225(7), 2075-2083. DOI: http://dx.doi.org/10.1007/s00707-013-1085-x
  11. Barretta, R. and Barretta, A. (2010), "Shear stresses in elastic beams: An intrinsic approach", Eur. J. Mech. A Solids, 29(3), 400-409. DOI: http://dx.doi.org/10.1016/j.euromechsol.2009.10.008
  12. Barretta, R. and Diaco, M. (2013), "On the shear centre in Saint-Venant beam theory", Mech. Res. Commun., 52, 52-56. DOI: http://dx.doi.org/10.1016/j.mechrescom.2013.06.006
  13. Chan, K.T., Lai, K.F., Stephen, N.G. and Young, K. (2011), "A new method to determine the shear coefficient of Timoshenko beam theory", J. Sound Vib., 330(14), 3488-3497. DOI: http://dx.doi.org/10.1016/j.jsv.2011.02.012
  14. Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. DOI: http://dx.doi.org/10.1115/1.3625046
  15. Dong, S.B., Alpdogan, C. and Taciroglu, E. (2010), "Much ado about shear correction factors in Timoshenko beam theory", Int. J. Solids Struct., 47(13), 1651-1665. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2010.02.018
  16. Dong, S.B., Carbas, S. and Taciroglu, E. (2013), "On principal shear axes for correction factors in Timoshenko beam theory", Int. J. Solids Struct., 50(10), 1681-1688. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2013.01.034
  17. Dym, C.L. and Shames, I.H. (2013), Solid Mechanics: A Variational Approach, Springer, New York, NY, USA. DOI: http://dx.doi.org/10.1007/978-1-4614-6034-3
  18. Ebrahimi, N. and Beni, Y.T. (2016), "Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory", Steel Compos. Struct., Int. J., 22(6), 1301-1336. DOI: http://dx.doi.org/10.12989/scs.2016.22.6.1301
  19. Ecsedi, I. (2009), "Some analytical solutions for Saint-Venant torsion of non-homo-geneous cylindrical bars", Eur. J. Mech. A Solids, 28(5), 985-990. DOI: http://dx.doi.org/10.1016/j.euromechsol.2009.03.010
  20. Ecsedi, I. (2013), "Some analytical solutions for Saint-Venant torsion of non-homo-geneous anisotropic cylindrical bars", Mech. Res Commun., 52, 95-100 DOI http://dx.doi.org/10.1016/j.mechrescom.2013.07.001
  21. Ecsedi, I. and Baksa, A. (2010), "Prandtl's formulation for the Saint-Venant's torsion of homogeneous piezoelectric beams", Int. J. Solids Struct., 47(22-23), 3076-3083. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2010.07.007
  22. Ecsedi, I. and Baksa, A. (2011), "Static analysis of composite beams with weak shear connection", Appl. Math. Model., 35(4), 1739-1750. DOI: http://dx.doi.org/10.1016/j.apm.2010.10.006
  23. Ecsedi, I. and Baksa, A. (2014), "Derivation of some fundamental formulae of strength of materials by energy method", Int. J. Mech. Eng. Educ., 42(4), 288-297. DOI: http://dx.doi.org/10.1177/0306419015574644
  24. Ecsedi, I. and Baksa, A. (2016), "Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory", Eng. Struct., 115, 107-117. DOI: http://dx.doi.org/10.1016/j.engstruct.2016.02.034
  25. Faghidian, S.A. (2016), "Unified formulation of the stress field of Saint-Venant's flexure problem for symmetric cross-sections", Int. J. Mech. Sci., 111-112, 65-72. DOI: http://dx.doi.org/10.1016/j.ijmecsci.2016.04.003
  26. Faghidian, S.A. (2017), "Unified formulations of the shear coefficients in Timoshenko beam theory", Am. Soc. Civil Engr., 143(9), 06017013-1:8. DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001297
  27. Favata, A., Micheletti, A. and Podio-Guidugli, P. (2010), "On shear and torsion factors in the theory of linearly elastic rods", Classroom Note, J. Elast., 99, 203-210. DOI: https://doi.org/10.1007/s10659-010-9243-z
  28. Gruttmann, F. and Wagner, W. (2001), "Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections", Comput. Mech., 27(3), 199-207. DOI: https://doi.org/10.1007/s004660100239
  29. Huang, B. and Kim, H.S. (2015), "Interlaminar stress analysis of piezo-bonded composite laminates using the extended Kantorovich method", Int. J. Mech. Sci., 90, 16-24. DOI: http://dx.doi.org/10.1016/j.ijmecsci.2014.11.003
  30. Hutchinson, J.R. (1981), "Transverse vibrations of beams, exact versus approximate solutions", J. Appl. Mech., 48(4), 923-928. DOI: http://dx.doi.org/10.1115/1.3157757
  31. Hutchinson, J.R. (2001), "Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68(1), 87-92. DOI: http://dx.doi.org/10.1115/1.1349417
  32. Iesan, D. (2009), Classical and Generalized Models of Elastic Rods, CRC Press, Taylor & Francis, Boca Raton, FL, USA.
  33. Joodaky, A. and Joodaky, I. (2015), "A semi-analytical study on static behavior of thin skew plates on Winkler and Pasternak foundations", Int. J. Mech. Sci., 100, 322-327. DOI: https://doi.org/10.1016/j.ijmecsci.2015.06.025
  34. Kaneko, T. (1975), "On Timoshenko's correction for shear in vibrating beams", J. Phys. D Appl. Phys., 8(16), 1927-1936. DOI: https://doi.org/10.1088/0022-3727/8/16/003
  35. Kennedy, G.J., Hansen, J.S. and Martins, J.R.R.A. (2011), "A Timoshenko beam theory with pressure corrections for layered orthotropic beams", Int. J. Solids Struct., 48(16-17), 2373-2382. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2011.04.009
  36. Kerr, A. (1968), "An extension of the Kantorovich method", Quarter. Appl. Math., 4, 219-229. DOI: http://dx.doi.org/10.1090/qam/99857
  37. Kourehli, S.S., Ghadimi, S. and Ghadimi, R. (2018), "Crack identification in Timoshenko beam under moving mass using RELM", Steel Compos. Struct., Int. J., 28(3), 278-288. DOI: https://doi.org/10.12989/scs.2018.28.3.278
  38. Kumari, P. and Shakya, A.K. (2017), "Two-dimensional solution of piezoelectric plate subjected to arbitrary boundary conditions using extended Kantorovich method", Procedia Eng., 173, 1523-1530. DOI: http://dx.doi.org/10.1016/j.proeng.2016.12.236
  39. Kumari, P., Behera, S. and Kapuria, S. (2016), "Coupled threedimensional piezoelasticity solution for edge effects in Levy-type rectangular piezolaminated plates using mixed field extended Kantorovich method", Compos. Struct., 140, 491-505. DOI: http://dx.doi.org/10.1016/j.compstruct.2015.12.029
  40. Kumari, P., Singh, A., Rajapakse, R.K.N.D. and Kapuria, S. (2017), "Three-dimensional static analysis of Levy-type functionally graded plate with in-plane stiffness variation", Compos. Struct., 168, 780-791. DOI: http://dx.doi.org/10.1016/j.compstruct.2017.02.078
  41. Lepe, F., Mora, D. and Rodriguez, R. (2014), "Locking-free finite element method for a bending moment formulation of Timoshenko beams", Comput. Math. Appl., 68(3), 118-131. DOI: http://dx.doi.org/10.1016/j.camwa.2014.05.011
  42. Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74(l), 81-87. DOI: http://dx.doi.org/10.1016/0022-460X(81)90493-4
  43. Liu, B., Xing Y.F., Eisenberger, M. and Ferreira, A.J.M. (2014), "Thickness-shear vibration analysis of rectangular quartz plates by a numerical extended Kantorovich method", Compos. Struct., 107, 429-435. DOI: http://dx.doi.org/10.1016/j.compstruct.2013.08.021
  44. Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, (4th Ed.), Dover, New York, NY, USA.
  45. Mason, W.E. and Herrmann, L.R. (1968), "Elastic shear analysis of general prismatic beams", J. Eng. Mech. Div., 94(4), 965-983.
  46. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. DOI: http://dx.doi.org/10.12989/scs.2018.25.4.415
  47. Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of doublebonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. DOI: http://dx.doi.org/10.12989/scs.2016.21.1.001
  48. Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solids Struct., 36(10), 1523-1540. DOI: http://dx.doi.org/10.1016/S0020-7683(98)00050-X
  49. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. DOI: https://doi.org/10.12989/scs.2017.23.3.339
  50. Rahmani, O., Hosseini, S.H.A., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam on modified couple stress theory", Steel Compos. Struct., Int. J., 26(5), 607-620. DOI: http://dx.doi.org/10.12989/scs.2018.26.5.607
  51. Reddy, J.N. (2017), Energy Principles and Variational Methods in Applied Mechanics, third ed., Wiley, New York, NY, USA.
  52. Renton, J.D. (1991), "Generalized beam theory applied to shear stiffness", Int. J. Solids Struct., 27(15), 1955-1967. DOI: http://dx.doi.org/10.1016/0020-7683(91)90188-L
  53. Renton, J.D. (1997), "A note on the form of shear coefficient", Int. J. Solids Struct., 34(14), 1681-1685. DOI: http://dx.doi.org/10.1016/S0020-7683(96)00116-3
  54. Romano, G., Barretta, A. and Barretta, R. (2012), "On torsion and shear of Saint-Venant beams", Eur. J. Mech. A. Solids, 35, 47-60. DOI: http://dx.doi.org/10.1016/j.euromechsol.2012.01.007
  55. Rostami, H., Rahbar Ranji, A. and Bakhtiari-Nejad, F. (2016), "Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates", Int. J. Mech. Sci., 115-116, 438-456. DOI: https://doi.org/10.1016/j.ijmecsci.2016.07.030
  56. Saint-Venant, A.J.C.B. (1856), "Memoire sur la Flexion des Prismes", J. de Math. Pures. Appl., 2(1), 89-189.
  57. Schramm, U., Kitis, L., Kang, W. and Pilkey, W.D. (1994), "On the shear deformation coefficient in beam theory", Fin. Elem. Anal. Des., 16(2), 141-162. DOI: http://dx.doi.org/10.1016/0168-874X(94)00008-5
  58. Sokolnikoff, I.S. (1956), Mathematical Theory of Elasticity, McGraw-Hill, New York, NY, USA.
  59. Steinboeck, A., Kugi, A. and Mang, H.A. (2013), "Energyconsistent shear coefficients for beams with circular cross sections and radially inhomogeneous materials", Int. J. Solids Struct., 50(11-12), 1859-1868. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2013.01.030
  60. Stephen, N.G. (1980), "Timoshenko's shear coefficient from a beam subjected to gravity loading", J. Appl. Mech., 47(1), 121-127. DOI: http://dx.doi.org/10.1115/1.3153589
  61. Stephen, N.G. (2001), "Discussion: Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68(6), 959-960. DOI: http://dx.doi.org/10.1115/1.1412454
  62. Stephen, N.G. and Levinson, M. (1979), "A second order beam theory", J. Sound Vib., 67(3), 293-305. DOI: http://dx.doi.org/10.1016/0022-460X(79)90537-6
  63. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, Buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. DOI: http://dx.doi.org/10.12989/scs.2015.19.5.1259
  64. Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41(245), 744-746. DOI: http://dx.doi.org/10.1080/14786442108636264
  65. Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", Philos. Mag., 43(253), 125-131. DOI: http://dx.doi.org/10.1080/14786442208633855
  66. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York, NY, USA.
  67. Zarmehi, F., Tavakoli, A. and Rahimpour, M. (2011), "On numerical stabilization in the solution of Saint-Venant equations using the finite element method", Comput. Math. Appl., 62, 1957-1968. DOI: http://dx.doi.org/10.1016/j.camwa.2011.06.039
  68. Zemirline, A., Ouali, M. and Mahieddine, A. (2015), "Dynamic behavior of piezoelectric bimorph beams with a delamination zone", Steel Compos. Struct., Int. J., 19(3), 759-776. DOI: http://dx.doi.org/10.12989/scs.2015.19.3.759
  69. Zhou, W., Jiang, L., Huang, Z. and Li, S. (2016), "Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip", Steel Compos. Struct., Int. J., 20(5), 1023-1042. DOI: http://dx.doi.org/10.12989/scs.2016.20.5.1023