참고문헌
- Aghdam, M.M., Shahmansouri, N. and Mohammadi, M. (2012), "Extended Kantorovich method for static analysis of moderately thick functionally graded sector plates", Math. Comput. Simul., 86, 118-130. DOI: http://dx.doi.org/10.1016/j.matcom.2010.07.029
- Ahouel, M., Houari, M.S.A., Bedia, E.A.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. DOI: http://dx.doi.org/10.12989/scs.2018.20.5.963
- Akbas, S.D. (2018), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. DOI: http://dx.doi.org/10.12989/scs.2018.26.6.733
- Baksa, A. and Ecsedi, I. (2009), "A note on the pure bending of nonhomogeneous prismatic bars", Int. J. Mech. Eng. Educ., 37(2), 118-129. DOI: http://dx.doi.org/10.7227/IJMEE.37.2.4
- Balduzzi, G., Morganti, S., Auricchio, F. and Reali, A. (2017), "Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation", Comput. Math. Appl., 74, 1531-1541. DOI: http://dx.doi.org/10.1016/j.camwa.2017.04.025
- Barretta, R. (2012), "On the relative position of twist and shear centres in the orthotropic and fiberwise homogeneous Saint-Venant beam theory", Int. J. Solids Struct., 49(21), 3038-3046. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2012.06.003
- Barretta, R. (2013a), "Analogies between Kirchhoff plates and Saint-Venant beams under torsion", Acta. Mech., 224(12), 2955-2964. DOI: http://dx.doi.org/10.1007/s00707-013-0912-4
- Barretta, R. (2013b), "On Cesaro-Volterra method in orthotropic Saint-Venant beam", J. Elast., 112(2), 233-253. DOI: http://dx.doi.org/10.1007/s10659-013-9432-7
- Barretta, R. (2013c), "On stress function in Saint-Venant beams", Meccanica, 48(7), 1811-1816. DOI: http://dx.doi.org/10.1007/s11012-013-9747-2
- Barretta, R. (2014), "Analogies between Kirchhoff plates and Saint-Venant beams under flexure", Acta. Mech., 225(7), 2075-2083. DOI: http://dx.doi.org/10.1007/s00707-013-1085-x
- Barretta, R. and Barretta, A. (2010), "Shear stresses in elastic beams: An intrinsic approach", Eur. J. Mech. A Solids, 29(3), 400-409. DOI: http://dx.doi.org/10.1016/j.euromechsol.2009.10.008
- Barretta, R. and Diaco, M. (2013), "On the shear centre in Saint-Venant beam theory", Mech. Res. Commun., 52, 52-56. DOI: http://dx.doi.org/10.1016/j.mechrescom.2013.06.006
- Chan, K.T., Lai, K.F., Stephen, N.G. and Young, K. (2011), "A new method to determine the shear coefficient of Timoshenko beam theory", J. Sound Vib., 330(14), 3488-3497. DOI: http://dx.doi.org/10.1016/j.jsv.2011.02.012
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. DOI: http://dx.doi.org/10.1115/1.3625046
- Dong, S.B., Alpdogan, C. and Taciroglu, E. (2010), "Much ado about shear correction factors in Timoshenko beam theory", Int. J. Solids Struct., 47(13), 1651-1665. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2010.02.018
- Dong, S.B., Carbas, S. and Taciroglu, E. (2013), "On principal shear axes for correction factors in Timoshenko beam theory", Int. J. Solids Struct., 50(10), 1681-1688. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2013.01.034
- Dym, C.L. and Shames, I.H. (2013), Solid Mechanics: A Variational Approach, Springer, New York, NY, USA. DOI: http://dx.doi.org/10.1007/978-1-4614-6034-3
- Ebrahimi, N. and Beni, Y.T. (2016), "Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory", Steel Compos. Struct., Int. J., 22(6), 1301-1336. DOI: http://dx.doi.org/10.12989/scs.2016.22.6.1301
- Ecsedi, I. (2009), "Some analytical solutions for Saint-Venant torsion of non-homo-geneous cylindrical bars", Eur. J. Mech. A Solids, 28(5), 985-990. DOI: http://dx.doi.org/10.1016/j.euromechsol.2009.03.010
- Ecsedi, I. (2013), "Some analytical solutions for Saint-Venant torsion of non-homo-geneous anisotropic cylindrical bars", Mech. Res Commun., 52, 95-100 DOI http://dx.doi.org/10.1016/j.mechrescom.2013.07.001
- Ecsedi, I. and Baksa, A. (2010), "Prandtl's formulation for the Saint-Venant's torsion of homogeneous piezoelectric beams", Int. J. Solids Struct., 47(22-23), 3076-3083. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2010.07.007
- Ecsedi, I. and Baksa, A. (2011), "Static analysis of composite beams with weak shear connection", Appl. Math. Model., 35(4), 1739-1750. DOI: http://dx.doi.org/10.1016/j.apm.2010.10.006
- Ecsedi, I. and Baksa, A. (2014), "Derivation of some fundamental formulae of strength of materials by energy method", Int. J. Mech. Eng. Educ., 42(4), 288-297. DOI: http://dx.doi.org/10.1177/0306419015574644
- Ecsedi, I. and Baksa, A. (2016), "Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory", Eng. Struct., 115, 107-117. DOI: http://dx.doi.org/10.1016/j.engstruct.2016.02.034
- Faghidian, S.A. (2016), "Unified formulation of the stress field of Saint-Venant's flexure problem for symmetric cross-sections", Int. J. Mech. Sci., 111-112, 65-72. DOI: http://dx.doi.org/10.1016/j.ijmecsci.2016.04.003
- Faghidian, S.A. (2017), "Unified formulations of the shear coefficients in Timoshenko beam theory", Am. Soc. Civil Engr., 143(9), 06017013-1:8. DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001297
- Favata, A., Micheletti, A. and Podio-Guidugli, P. (2010), "On shear and torsion factors in the theory of linearly elastic rods", Classroom Note, J. Elast., 99, 203-210. DOI: https://doi.org/10.1007/s10659-010-9243-z
- Gruttmann, F. and Wagner, W. (2001), "Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections", Comput. Mech., 27(3), 199-207. DOI: https://doi.org/10.1007/s004660100239
- Huang, B. and Kim, H.S. (2015), "Interlaminar stress analysis of piezo-bonded composite laminates using the extended Kantorovich method", Int. J. Mech. Sci., 90, 16-24. DOI: http://dx.doi.org/10.1016/j.ijmecsci.2014.11.003
- Hutchinson, J.R. (1981), "Transverse vibrations of beams, exact versus approximate solutions", J. Appl. Mech., 48(4), 923-928. DOI: http://dx.doi.org/10.1115/1.3157757
- Hutchinson, J.R. (2001), "Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68(1), 87-92. DOI: http://dx.doi.org/10.1115/1.1349417
- Iesan, D. (2009), Classical and Generalized Models of Elastic Rods, CRC Press, Taylor & Francis, Boca Raton, FL, USA.
- Joodaky, A. and Joodaky, I. (2015), "A semi-analytical study on static behavior of thin skew plates on Winkler and Pasternak foundations", Int. J. Mech. Sci., 100, 322-327. DOI: https://doi.org/10.1016/j.ijmecsci.2015.06.025
- Kaneko, T. (1975), "On Timoshenko's correction for shear in vibrating beams", J. Phys. D Appl. Phys., 8(16), 1927-1936. DOI: https://doi.org/10.1088/0022-3727/8/16/003
- Kennedy, G.J., Hansen, J.S. and Martins, J.R.R.A. (2011), "A Timoshenko beam theory with pressure corrections for layered orthotropic beams", Int. J. Solids Struct., 48(16-17), 2373-2382. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2011.04.009
- Kerr, A. (1968), "An extension of the Kantorovich method", Quarter. Appl. Math., 4, 219-229. DOI: http://dx.doi.org/10.1090/qam/99857
- Kourehli, S.S., Ghadimi, S. and Ghadimi, R. (2018), "Crack identification in Timoshenko beam under moving mass using RELM", Steel Compos. Struct., Int. J., 28(3), 278-288. DOI: https://doi.org/10.12989/scs.2018.28.3.278
- Kumari, P. and Shakya, A.K. (2017), "Two-dimensional solution of piezoelectric plate subjected to arbitrary boundary conditions using extended Kantorovich method", Procedia Eng., 173, 1523-1530. DOI: http://dx.doi.org/10.1016/j.proeng.2016.12.236
- Kumari, P., Behera, S. and Kapuria, S. (2016), "Coupled threedimensional piezoelasticity solution for edge effects in Levy-type rectangular piezolaminated plates using mixed field extended Kantorovich method", Compos. Struct., 140, 491-505. DOI: http://dx.doi.org/10.1016/j.compstruct.2015.12.029
- Kumari, P., Singh, A., Rajapakse, R.K.N.D. and Kapuria, S. (2017), "Three-dimensional static analysis of Levy-type functionally graded plate with in-plane stiffness variation", Compos. Struct., 168, 780-791. DOI: http://dx.doi.org/10.1016/j.compstruct.2017.02.078
- Lepe, F., Mora, D. and Rodriguez, R. (2014), "Locking-free finite element method for a bending moment formulation of Timoshenko beams", Comput. Math. Appl., 68(3), 118-131. DOI: http://dx.doi.org/10.1016/j.camwa.2014.05.011
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74(l), 81-87. DOI: http://dx.doi.org/10.1016/0022-460X(81)90493-4
- Liu, B., Xing Y.F., Eisenberger, M. and Ferreira, A.J.M. (2014), "Thickness-shear vibration analysis of rectangular quartz plates by a numerical extended Kantorovich method", Compos. Struct., 107, 429-435. DOI: http://dx.doi.org/10.1016/j.compstruct.2013.08.021
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, (4th Ed.), Dover, New York, NY, USA.
- Mason, W.E. and Herrmann, L.R. (1968), "Elastic shear analysis of general prismatic beams", J. Eng. Mech. Div., 94(4), 965-983.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. DOI: http://dx.doi.org/10.12989/scs.2018.25.4.415
- Mohammadimehr, M. and Shahedi, S. (2016), "Nonlinear magneto-electro-mechanical vibration analysis of doublebonded sandwich Timoshenko microbeams based on MSGT using GDQM", Steel Compos. Struct., Int. J., 21(1), 1-36. DOI: http://dx.doi.org/10.12989/scs.2016.21.1.001
- Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solids Struct., 36(10), 1523-1540. DOI: http://dx.doi.org/10.1016/S0020-7683(98)00050-X
- Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. DOI: https://doi.org/10.12989/scs.2017.23.3.339
- Rahmani, O., Hosseini, S.H.A., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam on modified couple stress theory", Steel Compos. Struct., Int. J., 26(5), 607-620. DOI: http://dx.doi.org/10.12989/scs.2018.26.5.607
- Reddy, J.N. (2017), Energy Principles and Variational Methods in Applied Mechanics, third ed., Wiley, New York, NY, USA.
- Renton, J.D. (1991), "Generalized beam theory applied to shear stiffness", Int. J. Solids Struct., 27(15), 1955-1967. DOI: http://dx.doi.org/10.1016/0020-7683(91)90188-L
- Renton, J.D. (1997), "A note on the form of shear coefficient", Int. J. Solids Struct., 34(14), 1681-1685. DOI: http://dx.doi.org/10.1016/S0020-7683(96)00116-3
- Romano, G., Barretta, A. and Barretta, R. (2012), "On torsion and shear of Saint-Venant beams", Eur. J. Mech. A. Solids, 35, 47-60. DOI: http://dx.doi.org/10.1016/j.euromechsol.2012.01.007
- Rostami, H., Rahbar Ranji, A. and Bakhtiari-Nejad, F. (2016), "Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates", Int. J. Mech. Sci., 115-116, 438-456. DOI: https://doi.org/10.1016/j.ijmecsci.2016.07.030
- Saint-Venant, A.J.C.B. (1856), "Memoire sur la Flexion des Prismes", J. de Math. Pures. Appl., 2(1), 89-189.
- Schramm, U., Kitis, L., Kang, W. and Pilkey, W.D. (1994), "On the shear deformation coefficient in beam theory", Fin. Elem. Anal. Des., 16(2), 141-162. DOI: http://dx.doi.org/10.1016/0168-874X(94)00008-5
- Sokolnikoff, I.S. (1956), Mathematical Theory of Elasticity, McGraw-Hill, New York, NY, USA.
- Steinboeck, A., Kugi, A. and Mang, H.A. (2013), "Energyconsistent shear coefficients for beams with circular cross sections and radially inhomogeneous materials", Int. J. Solids Struct., 50(11-12), 1859-1868. DOI: http://dx.doi.org/10.1016/j.ijsolstr.2013.01.030
- Stephen, N.G. (1980), "Timoshenko's shear coefficient from a beam subjected to gravity loading", J. Appl. Mech., 47(1), 121-127. DOI: http://dx.doi.org/10.1115/1.3153589
- Stephen, N.G. (2001), "Discussion: Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68(6), 959-960. DOI: http://dx.doi.org/10.1115/1.1412454
- Stephen, N.G. and Levinson, M. (1979), "A second order beam theory", J. Sound Vib., 67(3), 293-305. DOI: http://dx.doi.org/10.1016/0022-460X(79)90537-6
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, Buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. DOI: http://dx.doi.org/10.12989/scs.2015.19.5.1259
- Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41(245), 744-746. DOI: http://dx.doi.org/10.1080/14786442108636264
- Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", Philos. Mag., 43(253), 125-131. DOI: http://dx.doi.org/10.1080/14786442208633855
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York, NY, USA.
- Zarmehi, F., Tavakoli, A. and Rahimpour, M. (2011), "On numerical stabilization in the solution of Saint-Venant equations using the finite element method", Comput. Math. Appl., 62, 1957-1968. DOI: http://dx.doi.org/10.1016/j.camwa.2011.06.039
- Zemirline, A., Ouali, M. and Mahieddine, A. (2015), "Dynamic behavior of piezoelectric bimorph beams with a delamination zone", Steel Compos. Struct., Int. J., 19(3), 759-776. DOI: http://dx.doi.org/10.12989/scs.2015.19.3.759
- Zhou, W., Jiang, L., Huang, Z. and Li, S. (2016), "Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip", Steel Compos. Struct., Int. J., 20(5), 1023-1042. DOI: http://dx.doi.org/10.12989/scs.2016.20.5.1023