과제정보
연구 과제 주관 기관 : Slovenian Research Agency
참고문헌
- ABAQUS (2016), Documentation, DS-Simulia; Providence, RI, USA, AISC.
- Anderberg, Y. (1988), "Modelling steel behaviour", Fire Saf. J., 13, 17-26. https://doi.org/10.1016/0379-7112(88)90029-X
- EN 1993-1-2 (2004), Eurocode 3: Design of Steel Structures. Part 1.2: General rules - Structural fire design, European Committee for Standardization; Brussels, Belgium.
- EN 1363-1 (2012), Fire resistance tests, Part 1: General requirements, European Committee for Standardization; Brussels, Belgium.
- Chan, Y.K., Iu, C.K., Chan, S.L. and Albermani, F.G. (2010), "Performance-based structural fire design of steel frames using conventional computer software", Steel Compos. Struct., Int. J., 10(3), 207-222.
- Cowan, M. and Khandelwal, K. (2014), "Modeling of high temperature creep in ASTM A992 structural steels", Eng. Struct., 80, 426-434. https://doi.org/10.1016/j.engstruct.2014.09.020
- Harmathy, T.Z. (1967), "A comprehensive creep model", J. Basic Eng., 89, 496-502. https://doi.org/10.1115/1.3609648
- Huang, Z.F., Tan, K.H. and Ting, S.K. (2006), "Heating rate and boundary restraint effects on fire resistance of steel columns with creep", Eng. Struct., 28, 805-817. https://doi.org/10.1016/j.engstruct.2005.10.009
- Kirby, B.R. (1995), "The behavior of high-strength grade 8.8 bolts in fire", J. Constr. Steel. Res., 33, 3-38. https://doi.org/10.1016/0143-974X(94)00013-8
- Kirby, B.R. and Preston, R.R. (1988), "High temperature properties of hot-rolled, structural steels for use in fire engineering design studies", Fire Saf. J., 13, 27-37. https://doi.org/10.1016/0379-7112(88)90030-6
- Kodur, V.K.R. and Dwaikat, M.M.S. (2010), "Effect of high temperature creep on the fire response of restrained steel beams", Mater. Struct., 43, 1327-1341.
- Kodur, V., Dwaikat, M. and Fike, R. (2010), "High-temperature properties of steel for fire resistance modeling of structures", J. Mater. Civ. Eng., 22, 423-434.
- Kolsek, J. and Cesarek, P. (2015), "Performance-based fire modeling of intumescent painted steel structures and comparison to EC3", J. Constr. Steel. Res., 104, 91-103. https://doi.org/10.1016/j.jcsr.2014.10.008
- Kolsek, J., Planinc, I., Saje, M. and Hozjan, T. (2013), "The fire analysis of a steel-concrete side-plated beam", Finite Elem. Anal. Des., 74, 93-110. https://doi.org/10.1016/j.finel.2013.06.001
- Kolsek, J., Planinc, I., Saje, M. and Hozjan, T. (2014), "A fully generalised approach to modelling fire response of steel-RC composite structures", Int. J. Nonlin. Mech., 67, 382-393. https://doi.org/10.1016/j.ijnonlinmec.2014.10.015
- Li, G.Q. and Zhang, C. (2012), "Creep effect on buckling of axially restrained steel columns in real fires", J. Constr. Steel Res., 71, 182-188. https://doi.org/10.1016/j.jcsr.2011.09.006
- Luecke, W.E., McColskey, J.D., McCowan, C.N., Banovic, S.W., Fields, R.J., Foecke, T., Siewert, T.A. and Gayle, F.W. (2005), "NIST NCSTAR 1-3D: Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Mechanical Properties of Structural Steel", Research Report No. NIST NCSTAR 1-3D; NIST National Institute of Standards and Technology, Technology Administration, U.S. Department of Commerce, U.S. Government Printing Office, Washington, DC, USA.
- Poh, K.W. (2001), "Stress-strain-temperature relationship for structural steel", J. Mater. Civil Eng., 13, 371-379.
- Poh, K.W. (2014), "Erratum for 'Stress-strain temperature relationship for structural steel'", J. Mater. Civil. Eng., 26, 388-389. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000902
- Poh, K.W. and Skarajew, M. (1995), "Elevated temperature tensile testing of grade 300PLUSe hot rolled structural steel", Rep. No. BHPR/SM/R/007; BHP Research Melbourne Labs, Melbourne, Australia.
- Rubert, A. and Schaumann, P. (1985), "Temperaturabhangige Werkstoffeigenschaften von Baustahl bei Brandbeanspruchung", Stahlbau, 3, 81-86.
- Simo, J.C. and Hughes, T.J.R. (1998), Computational Inelasticity, Springer-Verlag, New York, NY, USA.
- Toric, N. and Burgess, I.W. (2016), "A unified rheological model for modelling steel behaviour in fire conditions", J. Constr. Steel Res., 127, 221-230. https://doi.org/10.1016/j.jcsr.2016.07.031
- Toric, N., Harapin, A. and Boko, I. (2013), "Experimental verification of a newly developed implicit creep model for steel structures exposed to fire", Eng. Struct., 57, 116-124.
- Toric, N., Harapin, A. and Boko, I. (2015), "Modelling of the influence of creep strains on the fire response of stationary heated steel members", J. Struct. Fire Eng., 6, 155-176. https://doi.org/10.1260/2040-2317.6.3.155
- Toric, N., Sun, R.R. and Burgess, I.W. (2016a), "Creep-free fire analysis of steel structures with Eurocode 3 material model", J. Struct. Fire Eng., 7, 234-248. https://doi.org/10.1108/JSFE-09-2016-016
- Toric, N., Sun, R.R. and Burgess, I.W. (2016b), "Development of a creep-free stress-strain law for fire analysis of steel structures", Fire. Mater., 40, 896-912. https://doi.org/10.1002/fam.2347
- Toric, N., Brnic, J., Boko, I., Brcic, M., Burgess, I.W. and Glavinic, I.U. (2017), "Development of a high temperature material model for grade S275JR steel in fire", J. Constr. Steel Res., 137, 161-168.
- Wald, F., da Silva, L.S., Moore, D.B., Lennon, T., Chladna, M., Santiago, A., Benes, M. and Borges, L. (2006), "Experimental behaviour of a steel structure under natural fire", Fire Saf. J., 41, 509-522. https://doi.org/10.1016/j.firesaf.2006.05.006
- Williams-Leir, G. (1983), "Creep of structural steel in fire: Analytical expressions", Fire Mater., 7, 73-78. https://doi.org/10.1002/fam.810070205
- Witteveen, J. and Twilt, L. (1975), "Behaviour of steel columns under fire action", International Colloquium on Column Strength, Paris, Volume 23.
- Yang, K.C. and Yua, Z.H. (2013), "Experimental research on the creep buckling of fire-resistant steel columns at elevated temperature", Steel Compos. Struct., Int. J., 15(2), 163-173. https://doi.org/10.12989/scs.2013.15.2.163