DOI QR코드

DOI QR Code

Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Heidari, Ebrahim (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2018.05.05
  • 심사 : 2018.06.15
  • 발행 : 2018.11.25

초록

In this paper the hygro-thermo-mechanical vibration and buckling behavior of embedded FG nano-plates are investigated. The Eringen's and Gurtin-Murdoch theories are applied to study the small scale and surface effects on frequencies and critical buckling loads. The effective material properties are modeled using Mori-Tanaka homogenization scheme. On the base of RPT and HSDPT plate theories, the Hamilton's principle is employed to derive governing equations. Using iterative and GDQ methods the governing equations are solved and the influence of different parameters on natural frequencies and critical buckling loads are studied.

키워드

참고문헌

  1. Ahn, S.J. (2004), Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space, Springer Science and Business Media, Berlin, Germany.
  2. Ahouel, M., Houari, M.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept". Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/SCS.2016.20.5.963
  3. Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theor. Nanosci., 8(9), 1821-1827.
  4. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
  5. Aluminum Association (1984), Aluminum: Properties and Physical Metallurgy, ASM International, Almere, Netherlands.
  6. Ansari, R. and Gholami, R. (2016), "Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory", Compos. Part B: Eng., 95, 301-316. https://doi.org/10.1016/j.compositesb.2016.04.002
  7. Ansari, R. and Gholami, R. (2017), "Size-dependent buckling and postbuckling analyses of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory", J. Struct. Stabil. Dynam., 17(1), 1750014. https://doi.org/10.1142/S0219455417500146
  8. Ansari, R., Ashrafi, M.A., Pourashraf, S. and Sahmani, S. (2015), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta Astronautica, 109, 42-51. https://doi.org/10.1016/j.actaastro.2014.12.015
  9. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory", Compos. Struct., 114, 124-134. https://doi.org/10.1016/j.compstruct.2014.04.013
  10. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2015), "A nonlinear shear deformable nanoplate model including surface effects for large amplitude vibrations of rectangular nanoplates with various boundary conditions", J. Appl. Mech., 7(5), 1550076. https://doi.org/10.1142/S1758825115500763
  11. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabi, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
  12. Barati, M. R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  13. Barati, M.R. and Shahverdi, H. (2017), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. https://doi.org/10.1080/15376494.2016.1196788
  14. Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141, 203-212.
  15. Belabed, Z., Bousahla, A.A., Houari, M.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/EAS.2018.14.2.103
  16. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  17. Bellifa, H., Benrahou, K.H. and Bousahala, A.A. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  18. Besseghier, A., Houari, M.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  19. Bloom, F. and Coffin, D.W. (2000), "Modelling the hygroscopic buckling of layered paper sheets", Math. Comput. Modelling, 31(8-9), 43-60. https://doi.org/10.1016/S0895-7177(00)00059-5
  20. Bouafia, K., Kaci, A., Houari, M.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  21. Bouderba, B., Houari, M.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  22. Bouderba, B., Houari, M.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  23. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  24. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  25. Chaht, F.L., Kaci, A., Houari, M.A., Tounsi, A., Beg, O.A and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425
  26. Chen, W.J. and Li, X.P. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Archive Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2
  27. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B Eng., 50, 171-179. https://doi.org/10.1016/j.compositesb.2013.01.027
  28. Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352.
  29. Daneshmehr, A., Rauabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", J. Eng. Sci., 95, 23-35. https://doi.org/10.1016/j.ijengsci.2015.05.011
  30. Duffy, D.G. (2015), Green's Functions with Applications. CRC Press, Florida, U.S.A.
  31. Ebrahimi, F. and Barati, M.R. (2016a), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910.
  32. Ebrahimi, F. and Barati, M.R. (2016b), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", J. Smart Nano Mater., 7(3), 119-143. https://doi.org/10.1080/19475411.2016.1223203
  33. Ebrahimi, F. and Barati, M.R. (2016c), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  34. Ebrahimi, F. and Barati, M.R. (2016d), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5
  35. Ebrahimi, F. and Barati, M.R. (2017a), "Damping vibration analysis of smart piezoelectric polymeric nanoplates on viscoelastic substrate based on nonlocal strain gradient theory", Smart Mater. Struct., 26(6), 065018. https://doi.org/10.1088/1361-665X/aa6eec
  36. Ebrahimi, F. and Barati, M.R. (2017b), "Investigating physical field effects on the size-dependent dynamic behavior of inhomogeneous nanoscale plates", Eur. Phys. J. Plus, 132(2), 88.
  37. Ebrahimi, F. and Barati, M.R. (2017c), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intelligent Mater. Syst. Structures, 28(11), 1472-1490. https://doi.org/10.1177/1045389X16672569
  38. Ebrahimi, F. and Barati, M.R. (2017d), "Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates", J. Brazilian Soc. Mech. Sci. Eng. 39(6), 2203-2223. https://doi.org/10.1007/s40430-016-0646-z
  39. Ebrahimi, F. and Barati, M.R. (2018a), "Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory", Compos. Struct., 185, 241-253.
  40. Ebrahimi, F. and Barati, M.R. (2018b), "Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects", Mech. Adv. Mater. Struct., 25(7), 611-621. https://doi.org/10.1080/15376494.2017.1285464
  41. Ebrahimi, F. and Hosseini, S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stresses, 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  42. Ebrahimi, F. and Hosseini, S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 160. https://doi.org/10.1140/epjp/i2016-16160-1
  43. Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  44. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of singlelayered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781
  45. Ebrahimi, F., Hamed, S. and Hosseini, S. (2016), "Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates", Appl. Phys. A, 122(10), 922.
  46. El-Haina, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  47. Eringen, A.C. (1972), "On nonlocal elasticity", J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  48. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  49. Foroushani, S.S. and Azhari, M. (2016), "Nonlocal buckling and vibration analysis of thick rectangular nanoplates using finite strip method based on refined plate theory", Acta Mechanica, 227(3), 721-742. https://doi.org/10.1007/s00707-015-1482-4
  50. Gholami, R., Ansari, R. and Gholami, Y. (2017), "Size-dependent bending, buckling and vibration of higherorder shear deformable magneto-electro-thermo-elastic rectangular nanoplates", 4(6), 065702. https://doi.org/10.1088/2053-1591/aa711c
  51. Gurses, M., Civalek, O., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", J. Numer. Methods Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  52. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rational Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  53. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", J. Solids Struct., 14(6), 431-440.
  54. Habibi, N., Ahmadi, O. and Ahmadi, S.R. (2016), "Vibration of nanoplate on elastic foundation in thermal environment", International Conference on Nanotechnology, Istanbul, Turkey, August.
  55. Hachemi, H., Kaci, A., Houari, M.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Composite Structures, 25(6), 717-726. https://doi.org/10.12989/SCS.2017.25.6.717
  56. Hamidi, A., Houari, M. A., Mahmoud, S. R., & Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  57. Hosseini, M., Jamalpoor, A. and Fath, A. (2017), "Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation", Meccanica, 52(6), 1381-1396.
  58. Houari, M.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  59. Hull, R. (1999), Properties of Crystalline Silicon. IET, London, United Kingdom.
  60. Ibach, H. (1997), "The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures", Surface Sci. Rep., 29(5-6), 195-263. https://doi.org/10.1016/S0167-5729(97)00010-1
  61. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA journal, 40(1), 162-169. https://doi.org/10.2514/2.1626
  62. Jones, R.M. (2006), Buckling of Bars, Plates and Shells, Bull Ridge Publishing, Virginia, U.S.A.
  63. Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025
  64. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/SCS.2018.27.2.201
  65. Karami, B., Janghorban, M. and Tounsi, A. (2018b), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  66. Karimi, M. and Shahidi, A.R. (2015), "Finite difference method for sixth-order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories", J. Nano Dimension, 6(5), 525-538.
  67. Karimi, M., Haddad, H.A. and Shahidi, A.R. (2015), "Combining surface effects and non-local two variable refined plate theories on the shear/biaxial buckling and vibration of silver nanoplates", Micro Nano Lett., 10(6), 276-281. https://doi.org/10.1049/mnl.2014.0651
  68. Khetir, H., Bouiadjra, M.B., Houari, M.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402 https://doi.org/10.12989/SEM.2017.64.4.391
  69. Link International (2016), What are coefficients of expansion and why are they important?;, Link International, Muizenberg, South Africa. www.linkinternationalkl.com/what-are-coefficients-ofexpansion-and-why-are-they-important/.
  70. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  71. Malekzadeh, P. (2007), "A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates", Thin-Wall. Struct., 45(2), 237-250. https://doi.org/10.1016/j.tws.2007.01.011
  72. Marie, J.M. (2012), Composite Materials: Mechanical Behavior and Structural Analysis, Springer Science and Business Media, Berlin. Germany.
  73. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  74. Mercan, K. and Civalek, O. (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
  75. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  76. Mondolfo, L.F. (2013), Aluminum Alloys: Structure and Properties, Elsevier, Amsterdam, Netherlands.
  77. Mouffoki, A., Bedia, E.A., Houari, M.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  78. Nguyen, N.T., Hui, D., Lee, J. and Xuan, H.N. (2015), "An efficient computational approach for sizedependent analysis of functionally graded nanoplates", Comput. Methods Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021
  79. Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos. Struct., 153, 428-441.
  80. Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", J. Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
  81. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
  82. Reddy, B.S., Kumar, J.S., Reddy, C.E. and Reddy, K.V. (2013), "Buckling analysis of functionally graded material plates using higher order shear deformation theory", J. Compos., 2013, 808764.
  83. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC press, Florida, U.S.A.
  84. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", J. Eng. Sci., 48(11), 1507-1518.
  85. Reddy, J.N. (2011), "A general nonlinear third-order theory of functionally graded plates", J. Aerosp. Lightweight Struct., 1(1), 1-21.
  86. Shaat, M., Mahmoud, F.F., Alshorbagy, A.E. and Alieldin, S.S. (2013), "Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects", J. Mech. Sci., 75, 223-232. https://doi.org/10.1016/j.ijmecsci.2013.07.001
  87. Shahram, P., Ganti, S., Ardebili, H. and Alizadeh, A. (2004), "On the scaling of thermal stresses in passivated nanointerconnects", J. Appl. Phys., 95(5), 2763-2769. https://doi.org/10.1063/1.1632011
  88. Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC press, Florida, U.S.A.
  89. Shen, J., Wang, H. and Zheng, S. (2018), "Size-dependent pull-in analysis of a composite laminated microbeam actuated by electrostatic and piezoelectric forces: Generalized differential quadrature method", J. Mech. Sci., 135, 353-361. https://doi.org/10.1016/j.ijmecsci.2017.11.002
  90. Shu, C. (2012), Differential Quadrature and Its Application in Engineering, Springer Science and Business Media, Berlin, Germany.
  91. Sobhy, M. (2015), "A comprehensive study on FGM nanoplates embedded in an elastic medium", Compos. Struct., 134, 966-980. https://doi.org/10.1016/j.compstruct.2015.08.102
  92. Swarnakar, A.K., Biest, O.V. and Vanhellemont, J. (2014), "Determination of the Si Young's modulus between room and melt temperature using the impulse excitation technique", Physica Status Solidi, 11(1), 150-155. https://doi.org/10.1002/pssc.201300101
  93. Vasiliev, V.V. and Morozov, E.V. (2013), Advanced Mechanics of Composite Materials and Structural Elements. Newnes Books, Oxford, United Kingdom.
  94. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  95. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/SSS.2018.21.1.065
  96. Zare, M., Nazemnezhad, R. and Hashemi, S.H. (2015), "Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method", Meccanica, 50(9), 2391-2408. https://doi.org/10.1007/s11012-015-0161-9
  97. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016
  98. Zidi, M., Tounsi, A., Houari, M.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001