DOI QR코드

DOI QR Code

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S. (Department of Civil Engineering, SRES's Sanjivani College of Engineering, Savitribai Phule Pune University) ;
  • Ghugal, Yuwaraj M. (Department of Applied Mechanics, Government Engineering College)
  • Received : 2018.02.14
  • Accepted : 2018.06.19
  • Published : 2018.11.25

Abstract

Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Keywords

References

  1. Akavci, S.S. and Tanrikulu, A.H. (2008), "Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories", Mech. Compos. Mater., 44(2), 145-154. https://doi.org/10.1007/s11029-008-9004-2
  2. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/SCS.2015.18.2.409
  3. Ding, J.H., Huang, D.J. and Chen, W.Q. (2007), "Elasticity solutions for plane anisotropic functionally graded beams", Int. J. Solids Struct., 44(1), 176-196. https://doi.org/10.1016/j.ijsolstr.2006.04.026
  4. Fazzolari, F.A. (2016), "Quasi-3D beam models for the computation of eigen frequencies of functionally graded beams with arbitrary boundary conditions", Compos. Struct., 154, 239-255.
  5. Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B Eng., 136, 254-271.
  6. Ghumare, S.M. and Sayyad, A.S. (2017), "A new fifth-order shear and normal deformation theory for static bending and elastic buckling of P-FGM beams", Lat. Am. J. Solids Stru., 14(11), 1893-1911. https://doi.org/10.1590/1679-78253972
  7. Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. https://doi.org/10.1016/j.compstruct.2012.08.012
  8. Hadji, L., Hassaine Daouadji, T., Meziane, M.A.A., Tlidji, Y. and Bedia, E.A.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315
  9. Hadji, L., Khelifa, Z. and Bedia, E.A.A. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
  10. Hassaine Daouadji, T., Henni, A.H., Tounsi, A. and Bedia, E.A.A. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6
  11. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behavior of laminated composite beam by new multi-layered laminated Compos Struct model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  12. Koizumi, M. (1993), "The concept of FGM", Ceramic Trans. Funct. Grad. Mater., 34, 3-10.
  13. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B-Eng., 28, 1-4.
  14. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  15. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012a), "A new higher order shear deformation theory for sandwich and composite laminated plates" Compos. Part B Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
  16. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012b), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
  17. Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Bedia, E.A.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  18. Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng. A, 362(1-2), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1
  19. Neves, A.M.A., Ferreira, A.J.M. and Carrera, E. (2012a), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B-Eng., 43(2), 711-725.
  20. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005
  21. Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074
  22. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempele, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng. A, 362(1-2), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X
  23. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", ASME J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  24. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
  25. Sayyad, A.S. and Ghugal, Y.M. (2011a), "Effect of transverse shear and transverse normal strain on the bending analysis of cross-ply laminated beams", Int. J. Appl. Math. Mech., 7(12), 85-118.
  26. Sayyad, A.S. and Ghugal, Y.M. (2011b), "Flexure of thick beams using new hyperbolic shear deformation theory", Int. J. Mech., 5(3), 113-122.
  27. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
  28. Sayyad, A.S. and Ghugal, Y.M. (2017a), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 484-504.
  29. Sayyad, A.S. and Ghugal, Y.M. (2017b), "A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates", Int. J. Appl. Mech., 9(1), 1-36.
  30. Sayyad, A.S., Ghugal, Y.M. and Naik, N.S. (2015b), "Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory", Curved Layered Struct., 2(1), 279-289.
  31. Sayyad, A.S., Ghugal, Y.M. and Shinde, P.N. (2015a), "Stress analysis of laminated composite and soft-core sandwich beams using a simple higher order shear deformation theory", J. Serbian Soc. Comput. Mech., 9(1), 15-35. https://doi.org/10.5937/jsscm1501015S
  32. Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coatings for thermal, wear and corrosion barriers", Mater. Sci. Eng. A, 362(1-2), 61-80. https://doi.org/10.1016/S0921-5093(03)00579-3
  33. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  34. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-200. https://doi.org/10.1007/BF01176650
  35. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66.
  36. Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibrations of prismatic bars", Philos. Mag., 41(245), 742-746.
  37. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  38. Vo, T.P., Thai, H.T., Nguyen, T.K. and Inam, F. (2014a), "Static and vibration analysis of functionally graded beams using refined shear deformation theory", Meccanica, 49(1), 155-168. https://doi.org/10.1007/s11012-013-9780-1
  39. Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014b), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029
  40. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
  41. Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023

Cited by

  1. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2018, https://doi.org/10.12989/sem.2020.76.3.413
  2. Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.243
  3. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389