DOI QR코드

DOI QR Code

심장혈관 조영술에서 씨네(cine)촬영의 프레임변화에 따른 ESD와 DAP 및 영상의 SNR·CNR 관계 분석: 10f/s과 15f/s을 중심으로

Analysis of the Relationships Between ESD and DAP, and Image SNR·CNR According to the Frame Change of Cine Imaging in CAG : With Focus on 10 f/s and 15 f/s

  • 투고 : 2018.08.16
  • 심사 : 2018.10.31
  • 발행 : 2018.10.31

초록

X선 장비를 이용한 심장혈관 조영술 시 프레임 변화에 따른 입사 표면 선량과 흡수선량을 비교 분석하여 피폭의 차이를 알아보고자 하였고 image J를 통한 촬영 영상의 SNR과 CNR을 측정 분석하여 프레임 변화가 영상 화질에 주는 영향을 비롯해 검사에 있어 적절한 프레임 선택의 방안을 모색하고자 하였다. 2017년 6월부터 2017년 10월까지 본원에서 CAG를 시행한 30명(남19, 여11)을 대상으로 하였고, 환자들의 연령대는 49-82세(평균 $65{\pm}9$세), 몸무게45-91kg (평균 $67{\pm}8.9kg$), 키 150-179cm (평균 $165.1{\pm}8.9kg$), BMI 19.5-30.5(평균 $24.5{\pm}2.9$)이었다. 입사표면선량 및 흡수선량은 후향적으로 Air kerma값과 DAP를 획득하여 비교 분석 하였고 SNR과 CNR은 Image J를 통하여 측정 분석 한 후 공식에 대입하여 결과 값을 도출하였다. 통계분석을 통한 상관관계 확인을 위해 통계프로그램은 SPSS를 사용하여 프레임 변화에 따른 입사표면선량과 흡수선량 및 SNR CNR의 상관관계 등을 분석하였다. 10프레임으로 촬영할 때와 15프레임으로 촬영 할 때 모두 입사표면선량과 흡수선량관계는 통계적으로 유의하지 않았다(p>0.05). SNR과 CNR의 관계에선 10프레임으로 촬영했을 때의 SNR($3.374{\pm}2.1297$)과 CNR($0.234{\pm}0.2249$)이 15프레임에서의 SNR($4.929{\pm}2.8532$)과 CNR($0.391{\pm}0.3025$)보다 SNR $1.43{\pm}0.4861$, CNR $0.132{\pm}0.0555$로 낮았으나 통계적으로는 유의하지 않았다(p>0.05). 상관관계 분석결과에서는 BMI와 air kerma, DAP간에, air kerma와 DAP간에, SNR과 CNR간에 통계적으로 유의한 결과를 얻었다(p<0.001, p<0.001). 결론적으로 심장혈관 조영술 시 10프레임과 15프레임으로 변화를 주어 촬영하여도 입사표면선량과 흡수선량은 큰 차이를 나타내지 않았으며, 10프레임보다 15프레임 촬영에서의 SNR과 CNR이 증가하였으나 통계적으로는 유의하지 않았기에 본 논문을 통해 환자와 시술자 모두 10프레임과 15프레임 촬영으로 인한 X선 피폭 문제뿐 아니라 영상의 화질감소에 관한 우려 역시 줄어들 수 있을 것으로 사료된다.

This study aimed to investigate the difference of X-ray exposure by comparing and analyzing entrance surface dose and absorbed dose according to the frame change in coronary angiography using an X-ray machine. Moreover, appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring and analyzing the SNR and CNR of the image through image J. The study was conducted on 30 patients (19 males and 11 females) who underwent CAG at this hospital from June 2017 to October 2017. In regard to the patients, their age range was 49-82 years (mean of $65{\pm}9$ years), body weight was 45-91 kg (mean of $67{\pm}8.9kg$), height was 150-179cm (mean of $165.1{\pm}8.9kg$), and BMI was 19.5-30.5(mean of $24.5{\pm}2.9$). For the entrance surface dose and absorbed dose, air kerma value and DAP were obtained and analyzed retrospectively. The SNR and CNR were measured and analyzed through imageJ, and the result values were derived by applying the values to the formula. As for the statistical analyses, the correlations between the entrance surface dose and absorbed dose, and between the SNR and CNR were analyzed by using the SPSS statistical program. The relationship between the entrance surface dose and absorbed dose was not statistically significant for both 10 f/s and 15 f/s (p>0.05). In terms of the relationship between the SNR and CNR, the SNR ($3.374{\pm}2.1297$) and CNR ($0.234{\pm}0.2249$) in 10 f/s were $1.43{\pm}0.4861$ and $0.132{\pm}0.0555$ lower, respectively, than the SNR ($4.929{\pm}2.8532$) and CNR ($0.391{\pm}0.3025$) in 15 f/s, which were not statistically significant (p>0.05). In the correlation analysis, statistically significant results were obtained among the BMI, air kerma, and DAP; between air kerma and DAP; and between SNR and CNR (p<0.001, p<0.001). In conclusion, there was no significant difference between the entrance surface dose and absorbed dose even when the images were taken by changing the frame from 10 f/s to 15 f/s at the time of the coronary angiography. SNR and CNR increased at 15 f/s than at 10 f/s, but they were not statistically significant. Therefore, this study suggests that the concern of the patient and practitioner regarding image quality degradation, as well as the problem of X-ray exposure caused by imaging at 10 f/s and 15 f/s, may be reduced.

키워드

참고문헌

  1. T. Y. Yun, J. W. Son, K. J. Kim, and et al, "The analysis of scattered radiation distribution depends on changing tube angle in angiography suite", Cardio-Vascular Interventional Technology, Vol. 20, No. 1, pp. 55-63, 2017.
  2. W. G. Jeong "Radiation exposure and its reduction in the fluoroscopic examination and fluoroscopy-guided interventional radiology", Journal of Korean Medical Association, Vol. 54, No. 12, pp. 1269-1276, 2011. https://doi.org/10.5124/jkma.2011.54.12.1269
  3. J. C. Gurley, S. E. Nissen, D. C. Booth, A. N. Demaria "Influence of operator-and patient-dependent variables on the suitability of automated quantitative coronary arterygraphy for routine clinical use", Journal of the American College of Cardiology, Vol. 19, No. 6, pp. 1237-1243, 1992. https://doi.org/10.1016/0735-1097(92)90330-P
  4. Y. D. Kim, I. Park, S. T. Kim, and et al, "Interoserver Variability in the Assessment of Coronary Arteriogram -Comparison between Visual and Computer based Quantitative Estimation-", Radiographics, Vol. 23, No. 6, pp. 857-866, 1998.
  5. L. Finci, B. Meirer, G. Steffenino, P. Roy, W. Rutishauser, "Radiation exposure during diagnostic catheterization and single- and double-vessel percutaneous transluminal coronary angioplasty", Journal of the American College of Cardiology, Vol. 60, No, 16, pp. 1401-1403, 1987. https://doi.org/10.1016/0002-9149(87)90630-8
  6. S. M. Park, J. M. Park, S. Y. Lee, S. I. Gang, Y. B. Park, D. H. Han, "A Study on the Comparison of Deep Dose of Fluoroscopy and Cine Angiography in Heart Examination," Journal of the Korean Society of Cardio-Vascular Interventional Technology, Vol. 17, No. 1, pp. 145-150, 2014.
  7. Y. H. Kang, P. G. Jo, "Reduction of Radiation Dose according to Geometric Parameters from Digital Coronary Angiography," Journal of the Korean Society of Radiology, Vol. 7, No. 4, pp. 277-284, 2013. https://doi.org/10.7742/jksr.2013.7.4.277
  8. Ministry of Food and Drug Safety, "Radiation protection guidelines for patient dose reduction in interventional procedures," Radiation safety management series, No. 36, 2014.
  9. J. W. Jaaco, D. L. Miler, "Measuring and monitoring radiation dose during fluoroscopically guided procedures, Tech Vasc Interv Tadiol, Vol. 13, No. 3, pp. 188-193, 2010. https://doi.org/10.1053/j.tvir.2010.03.009
  10. O. J. Park, J. J. Kim, H. R. Ryu, H. W. Lee, "Delayed clinical symptom and treatment seek time in patients with acute myocardial infarction", Journal of Korean Academy of Nursingy, Vol. 30, No. 3, pp. 659-669, 1997.
  11. J. I. Choi, D. G. Na, H. H. Kim, M. Y. Shin, K. J. An, J. Y. Lee, "Quality Control of Medical Imaging", Korean Journal of Radiology, Vol. 50, No. 5, pp. 317-331, 2004. https://doi.org/10.3348/jkrs.2004.50.5.317
  12. Y. E. Kim, J. H. Kim, J. S. Kim, C. M. Kim, "Comparison of computed tomography (CT) dose and image quality - Dyna CT and Multi Detector CT center", Journal of the Korean Society of Cardio-Vascular Interventional Technology, Vol. 17, No. 1, pp. 163-172, 2014.
  13. Y. E. Kim, J. S. Kim, J. H. Yun,, T. I. Kim, "A Study on the Evaluation of Dose and Quality of Image by C-Arms Angle and Copper Filter Thickness during Cerebral Angiography and Intervention", Journal of the Korean Society of Cardio-Vascular Interventional Technology, Vol. 20, No. 1, pp. 152-160, 2017. https://doi.org/10.1053/j.tvir.2017.07.004
  14. S. S. Kang, I. H. Go, H. G. Goo. et al, "Textbook of Vascular and Interventional Radiography", 2nd Ed.. The Korean Society of Medical Imaging Technology.. Korea, pp. 114-115, 2012.