DOI QR코드

DOI QR Code

The Effect of Body Mass Index on Entrance Surface Air Kerma in Abdominal X-ray Radiography Using Automatic Exposure Control

자동노출제어를 이용한 복부 일반 X선 검사에서 체질량지수가 입사표면공기커마에 미치는 영향

  • 구노현 (서울아산병원 영상의학과) ;
  • 윤희수 (서울아산병원 영상의학과) ;
  • 최관우 (서울아산병원 영상의학과) ;
  • 이종은 (서울아산병원 영상의학과) ;
  • 김정진 (서울아산병원 영상의학과)
  • Received : 2018.08.18
  • Accepted : 2018.10.31
  • Published : 2018.10.31

Abstract

The purpose of this study was to determine the effect of body mass index (BMI) on entrance surface air kerma (ESAK) in abdominal X-ray radiography using automatic exposure control (AEC). This study included 321 patients who underwent abdominal X-ray using AEC, and we correlated ESAK with height, weight, BMI and compared mean ESAK according to BMI grades (Underweight, Normal, Overweight, Obese 1, Obese 2). As a result, Weight ($R^2=0.777$, p<.001) and BMI ($R^2=0.835$, p<.001) were positively associated with ESAK, but no significant association was found between height ($R^2=0.075$, p<.001) and ESAK. The mean ESAK with respect to BMI grades showed statistically significant difference and in the post-hoc analysis, the existence of 5 subgroups at the significance level of 0.05 indicated that there were differences in the ESAK in all BMI grades. Also, as the increment of ESAK between two neighboring BMI grades increases from Underweight to Obese 2, the exposure dose dramatically increased as the BMI increased. Thus, an excessive exposure dose due to increasing BMI when using AEC should be acknowledged and Efforts to reduce dose should be taken, such as: by fixing the exposure conditions.

본 연구는 자동노출제어 (AEC; Automatic Exposure Control)를 이용한 복부 일반 X선 검사에서 체질량지수 (BMI; Body Mass Index)가 입사표면공기커마 (ESAK; Entrance Surface Air Kerma)에 미치는 영향에 대해 알아보았다. 연구방법은 AEC를 이용하여 복부 일반 X선 검사를 시행 받은 321명을 대상으로 키, 몸무게, BMI와 ESAK의 관계 및 BMI범주 (Underweight, Normal, Overweight, Obese 1, Obese 2)에 따른 평균 ESAK값을 비교하였다. 연구의 결과 몸무게 ($R^2=0.777$, p<.001)와 BMI ($R^2=0.835$, p<.001)는 ESAK와 양의 상관관계가 있었던 반면, 키 ($R^2=0.075$, p<.001)와 BMI는 뚜렷한 상관관계를 확인할 수 없었다. BMI범주에 대한 평균 ESAK는 통계적으로 유의한 차이를 보였으며, 사후분석을 통해 유의수준 0.05에 대해 5개의 부집단이 존재하여 모든 BMI범주 간 ESAK값의 차이가 있는 것을 알 수 있었다. 또한, 인접한 BMI간 ESAK값 증가폭이 Underweight에서 Obese 2로 갈수록 점차 늘어나 BMI가 증가할수록 피폭선량이 급격하게 증가되는 것을 알 수 있었다. 따라서 복부 일반 X선 검사에서 AEC를 사용할 경우 BMI가 증가함에 따라 과도한 선량이 조사될 수 있음을 인식하고 검사조건을 고정하여 촬영하는 등의 노력을 통한 선량저감화가 필요할 것으로 판단된다.

Keywords

References

  1. T. W. Kahnzada, A. Samad, I. Zulfiqar, "Abuse of plain abdominal radiographs in abdominal pain," Rawal Medical Journal, Vol. 32, No. 1, pp. 47-49, 2007.
  2. S. Feyler, V. Williamson, D. King, "Plain abdominal radiographs in acute medical emergencies: an abused investigation?," Postgraduate Medical Journal, Vol. 78, No. 916, pp. 94-96, 2002. https://doi.org/10.1136/pmj.78.916.94
  3. MFDS, "Guidelines for patient dose recommendations in the abdomen, pelvis and lumbar radiograpy," Radiation Safety Management Series, No. 25, 11-1470000-002660-01, 2012.
  4. P. K. Cho, "Patient radiation exposure dose in computed tomography," Journal of the Korean Society of Radiology, Vol. 9, No. 2, pp. 109-115, 2015. https://doi.org/10.7742/jksr.2015.9.2.109
  5. D. A. Schauer, O. W. Linton, "NCRP report No. 160, Ionizing radiation exposure of the population of the United States, medical exposure--are we doing less with more, and is there a role for health physicists?," Health Physics Society, Vol. 97, No. 1, pp. 1-5, 2009. https://doi.org/10.1097/01.HP.0000356672.44380.b7
  6. M. Doss, "Linear no-threshold model vs. radiation hormesis," Dose Response, Vol. 11, No. 4, pp 495-512, 2013.
  7. ICRP, "Recommendations of the International Commission on Radiological Protection. Publication 60," Annals of ICRP Vol. 21, No. 1-3, 1991.
  8. L. A. Waszczuk, M. Guzinski, A. Czarnecka, M. J. Sąsiadek, Size-specific dose estimates for evaluation of individual patient dose in CT protocol for renal colic, American Journal of Roentgenology, Vol. 205, No. 1, pp. 100-105, 2015. https://doi.org/10.2214/AJR.14.13573
  9. P. Doyle, C. J. Martin, "Calibrating automatic exposure control devices for digital radiography," Physics in Medicine, Vol. 51, No. 21, pp. 5475-5485, 2006.
  10. S. Sterling, "Automatic exposure control: a primer," Radiologic technology, Vol. 59, No. 5, pp. 421-427, 1988.
  11. H. Murazaki, Y. Funama, Y. Sugaya, O. Miyazaki, S. Tomiguchi, K. Awai, "Optimal setting of automatic exposure control based on image noise and contrast on iodine-enhanced CT," Academic Radiology, Vol. 19, No. 4, pp. 478-484, 2012. https://doi.org/10.1016/j.acra.2011.11.011
  12. Z. J. Wang, K. S. Chen, R. Gould, F. V. Coakley, Y. Fu, B. M. Yeh, "Positive enteric contrast material for abdominal and pelvic CT with automatic exposure control: what is the effect on patient radiation exposure?," European Journal of Radiology, Vol. 79, No. 2, pp. 58-62, 2011. https://doi.org/10.1016/j.ejrad.2011.03.059
  13. J. Paul, B. Schell, J. M. Kerl, W. Maentele, T. J. Vogl, R. W. Bauer, "Effect of contrast material on image noise and radiation dose in adult chest computed tomography using automatic exposure control: a comparative study between 16-, 64- and 128-slice CT," European Journal of Radiology, Vol. 79, No. 2, pp. 128-132, 2011. https://doi.org/10.1016/j.ejrad.2011.05.012
  14. S. T. Schindera, R. C. Nelson, T. L. Toth, G. T. Nguyen, G. I. Toncheva, D. M. DeLong, T. T. Yoshizumi, "Effect of patient size on radiation dose for abdominal MDCT with automatic tube current modulation: phantom study," American Journal of Roentgenology, Vol. 190, No. 2, pp. 100-105, 2008. https://doi.org/10.2214/AJR.07.2891
  15. T. J. Wood, C. S. Moore, C. J. Horsfield, J. R. Saunderson, A. W. Beavis, "Accounting for patient size in the optimization of dose and image quality of pelvis cone beam CT protocols on the Varian OBI system," The British Journal of Radiology, Vol. 88, No. 1055, 2015.
  16. A. E. Papadakis, K. Perisinakis, J. Damilakis, "Automatic exposure control in CT: the effect of patient size, anatomical region and prescribed modulation strength on tube current and image quality," European Radiology, Vol. 24, No. 1, pp. 2520-2531, 2014. https://doi.org/10.1007/s00330-014-3309-4
  17. A. P. Ladia, S. G. Skiadopoulos, A. Ν. Karahaliou, G. A. T. Messaris, H. B. Delis, G. S. Panayiotakis, "The effect of increased body mass index on patient dose in paediatric radiography," European Journal of Radiology, Vol. 85, No. 10, pp. 1689-1694, 2016. https://doi.org/10.1016/j.ejrad.2016.07.009
  18. Y. K. Kim, Y. Kim, "Image Quality and Radiation Exposure in Coronary CT Angiography According to Tube Voltage and Body Mass Index," Journal of the Korean Radiological Society, Vol. 62, No. 1, pp. 29-35, 2010. https://doi.org/10.3348/jksr.2010.62.1.29
  19. J. B. Han, S. J. Jang, I. B. Moon, H. J. Kim, N. G. Choi, "Evaluation of Radiation Dose and Image Quality Between Manual and Automatic Exposure Control Mode According to Body Mass Index in Cardiac CT," International Journal of Contents, Vol. 13, No. 4, pp. 290-299, 2013.
  20. KSSO, Obesity Treatment Guidelines, Korean Society for the Study of Obesity, pp. 17-21, 2012.
  21. European Commission, European Guidelines on Quality Criteria for Diagnostic Radiographic Images, EU Publications, pp. 34-44, 1996.
  22. A. Aliasgharzadeh, E. Mihandoost, M. Masoumbeigi, M. Salimian, M. Mohseni, "Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran," Global Journal of Health Science, Vol. 7, No. 5, pp. 202-207, 2015.
  23. S. C. Uniyal, V. Chaturvedi, S. D. Sharma, S. Raghuvanshi, "Estimation of entrance surface air kerma due to diagnostic X-ray examinations of adult patients in Uttarakhand, India and establishment of local diagnostic reference levels," Australasian Physical & Engineering Sciences in Medicine, Vol. 40, No. 3, pp. 687-694, 2017. https://doi.org/10.1007/s13246-017-0577-8
  24. ICRP, "Managing patient dose in digital radiology," Annals of ICRP Vol. 34, No. 1, 2004.
  25. MFDS, "Guidelines for patient dose recommendations in general radiography," Radiation Safety Management Series, No. 30, 11-1470550-000299-01, 2012.
  26. G. S. Shin, K. Y. Min, D. H. Kim, K. J. Lee, J. H. Park, G. W. Lee, "Entrance Skin Dose According to Age and Body Size for Pediatric Chest Radiography," Journal of Radiological Science and Technology, Vol. 33, No. 4, pp. 327-334, 2010.
  27. M. K. Kalra, M. M. Maher, T. L. Toth, R. S. Kamath, E. F. Halpern, S. Saini, "Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis," Radiology, Vol. 232, No. 2, pp. 347-353, 2004. https://doi.org/10.1148/radiol.2322031304
  28. K. W. Kim, J. W. Min, Y. R. Kwon, K. T. Kwon, S. W. Seo, J. Y. Oh, S. Y. Son, J. H. Son, "Comparison of Exposure Dose by Using AEC Mode of Abdomen AP Study in Radiography," Journal of Radiological Science and Technology, Vol. 38, No. 3, pp. 205-211, 2015. https://doi.org/10.17946/JRST.2015.38.3.03
  29. A. Shah, P. Das, E. Subkovas, A. N. Buch, M. Rees, C. Bellamy, "Radiation dose during coronary angiogram: relation to body mass index," Heart, Lung & Circulation, Vol. 24, No. 1, pp. 21-25, 2015. https://doi.org/10.1016/j.hlc.2014.05.018
  30. J. N. Shim, Y. G. Lee, Y. J. Lee, "Estimation of Absorbed Dose for Anterior and Posterior Organs with Body Mass Index in Standing Whole Spine Examination," Journal of the Institute of Electronics and Information Engineers, Vol. 53, No. 12, pp. 147-151, 2016. https://doi.org/10.5573/IEIE.2016.53.12.147

Cited by

  1. 미세 대조도 영상을 기반한 디지털 방사선 영상 시스템의 자동노출제어 조절인자 간의 상관관계 분석 vol.44, pp.1, 2018, https://doi.org/10.17946/jrst.2021.44.1.1