DOI QR코드

DOI QR Code

Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects

  • Song, Woong-Kyu (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Kang, Joo-Hyun (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Cha, Jae-Kook (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Lee, Jung-Seok (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Paik, Jeong-Won (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Jung, Ui-Won (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Kim, Byung-Hoon (Department of Dental Materials, Chosun University School of Dentistry) ;
  • Choi, Seong-Ho (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
  • Received : 2018.08.23
  • Accepted : 2018.10.11
  • Published : 2018.10.30

Abstract

Purpose: The aim of the present study was to evaluate the biocompatibility and barrier function of mussel adhesive protein (MAP)-loaded collagen membranes in guided bone regeneration (GBR). Methods: Eight male New Zealand white rabbits were used. Four circular defects (diameter: 8 mm) were created in the calvarium of each animal. The defects were randomly assigned to 1) a negative control group, 2) a cyanoacrylate (CA)-loaded collagen membrane group (the CA group), 3) a MAP-loaded collagen membrane group (the MAP group), and 4) a group that received a polycaprolactone block with MAP-loaded collagen membrane (the MAP-PCL group). Specimens were harvested at 2 weeks (n=4) and 8 weeks (n=4) postoperatively for observational histology and histometric analysis. Results: In the histologic analysis, MAP was completely absorbed without any byproducts. In contrast, some of the CA adhesive remained, showing an inflammatory reaction, at 8 weeks. In the MAP-PCL group, the MAP-loaded collagen membranes served as a barrier membrane despite their fast degradation in GBR. No significant difference was found in the amount of new bone between the MAP-PCL and MAP groups ($1.82{\pm}0.86mm^2$ and $2.60{\pm}0.65mm^2$, respectively). Conclusions: The MAP-loaded collagen membrane functioned efficiently in this rabbit calvarial GBR model, with excellent biocompatibility. Further research is needed to assess clinical applications in defect types that are more challenging for GBR than those used in the current model.

Keywords

References

  1. Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res 2010;21:567-76. https://doi.org/10.1111/j.1600-0501.2010.01922.x
  2. Wang HL, Boyapati L. "PASS" principles for predictable bone regeneration. Implant Dent 2006;15:8-17. https://doi.org/10.1097/01.id.0000204762.39826.0f
  3. Rezende ML, Consolaro A, Sant'Ana AC, Damante CA, Greghi SL, Passanezi E. Demineralization of the contacting surfaces in autologous onlay bone grafts improves bone formation and bone consolidation. J Periodontol 2014;85:e121-9. https://doi.org/10.1902/jop.2013.130298
  4. Perez M, Fernandez I, Marquez D, Bretana RM. Use of N-butyl-2-cyanoacrylate in oral surgery: biological and clinical evaluation. Artif Organs 2000;24:241-3. https://doi.org/10.1046/j.1525-1594.2000.06519.x
  5. Choi BH, Kim BY, Huh JY, Lee SH, Zhu SJ, Jung JH, et al. Cyanoacrylate adhesive for closing sinus membrane perforations during sinus lifts. J Craniomaxillofac Surg 2006;34:505-9. https://doi.org/10.1016/j.jcms.2006.07.859
  6. Rezende ML, Cunha PO, Damante CA, Santana AC, Greghi SL, Zangrando MS. Cyanoacrylate adhesive as an alternative tool for membrane fixation in guided tissue regeneration. J Contemp Dent Pract 2015;16:512-8. https://doi.org/10.5005/jp-journals-10024-1714
  7. Bas B, Ozden B, Bekcioglu B, Sanal KO, Gulbahar MY, Kabak YB. Screw fixation is superior to N-butyl-2-cyanoacrylate in onlay grafting procedure: a histomorphologic study. Int J Oral Maxillofac Surg 2012;41:537-43. https://doi.org/10.1016/j.ijom.2011.10.025
  8. Chang YY, Dissanayake S, Yun JH, Jung UW, Kim CS, Park KJ, et al. The biological effect of cyanoacrylatecombined calcium phosphate in rabbit calvarial defects. J Periodontal Implant Sci 2011;41:123-30. https://doi.org/10.5051/jpis.2011.41.3.123
  9. Lu Q, Danner E, Waite JH, Israelachvili JN, Zeng H, Hwang DS. Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface 2013;10:20120759. https://doi.org/10.1098/rsif.2012.0759
  10. Waite JH. Mussel adhesion - essential footwork. J Exp Biol 2017;220:517-30. https://doi.org/10.1242/jeb.134056
  11. Martinez Rodriguez NR, Das S, Kaufman Y, Wei W, Israelachvili JN, Waite JH. Mussel adhesive protein provides cohesive matrix for collagen type-$1{\alpha}$. Biomaterials 2015;51:51-7. https://doi.org/10.1016/j.biomaterials.2015.01.033
  12. Waite JH. Adhesion a la moule. Integr Comp Biol 2002;42:1172-80. https://doi.org/10.1093/icb/42.6.1172
  13. Dove J, Sheridan P. Adhesive protein from mussels: possibilities for dentistry, medicine, and industry. J Am Dent Assoc 1986;112:879. https://doi.org/10.14219/jada.archive.1986.0116
  14. Castillo JJ, Shanbhag BK, He L. Comparison of natural extraction and recombinant mussel adhesive proteins approaches. In: Puri M, editor. Food bioactives. Basel: Springer; 2017. p.111-35.
  15. Yu M, Hwang J, Deming TJ. Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 1999;121:5825-6. https://doi.org/10.1021/ja990469y
  16. Lee H, Scherer NF, Messersmith PB. Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A 2006;103:12999-3003. https://doi.org/10.1073/pnas.0605552103
  17. Cha HJ, Hwang DS, Lim S, White JD, Matos-Perez CA, Wilker JJ. Bulk adhesive strength of recombinant hybrid mussel adhesive protein. Biofouling 2009;25:99-107. https://doi.org/10.1080/08927010802563108
  18. Hwang DS, Gim Y, Yoo HJ, Cha HJ. Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials 2007;28:3560-8. https://doi.org/10.1016/j.biomaterials.2007.04.039
  19. Grande DA, Pitman MI. The use of adhesives in chondrocyte transplantation surgery. Preliminary studies. Bull Hosp Jt Dis Orthop Inst 1988;48:140-8.
  20. Hong JM, Kim BJ, Shim JH, Kang KS, Kim KJ, Rhie JW, et al. Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Acta Biomater 2012;8:2578-86. https://doi.org/10.1016/j.actbio.2012.03.041
  21. Mehdizadeh M, Weng H, Gyawali D, Tang L, Yang J. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 2012;33:7972-83. https://doi.org/10.1016/j.biomaterials.2012.07.055
  22. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 2010;40:180-7. https://doi.org/10.5051/jpis.2010.40.4.180
  23. Duarte A, Coelho J, Bordado J, Cidade M, Gil M. Surgical adhesives: systematic review of the main types and development forecast. Prog Polym Sci 2012;37:1031-50. https://doi.org/10.1016/j.progpolymsci.2011.12.003
  24. Tseng YC, Hyon SH, Ikada Y. Modification of synthesis and investigation of properties for 2-cyanoacrylates. Biomaterials 1990;11:73-9. https://doi.org/10.1016/0142-9612(90)90055-U
  25. Eiferman RA, Snyder JW. Antibacterial effect of cyanoacrylate glue. Arch Ophthalmol 1983;101:958-60. https://doi.org/10.1001/archopht.1983.01040010958022
  26. Al-Belasy FA, Amer MZ. Hemostatic effect of n-butyl-2-cyanoacrylate (histoacryl) glue in warfarin-treated patients undergoing oral surgery. J Oral Maxillofac Surg 2003;61:1405-9. https://doi.org/10.1016/j.joms.2002.12.001
  27. Kutcher MJ, Ludlow JB, Samuelson AD, Campbell T, Pusek SN. Evaluation of a bioadhesive device for the management of aphthous ulcers. J Am Dent Assoc 2001;132:368-76. https://doi.org/10.14219/jada.archive.2001.0180
  28. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg 1988;81:672-6. https://doi.org/10.1097/00006534-198805000-00004
  29. Weng D, Hurzeler MB, Quinones CR, Ohlms A, Caffesse RG. Contribution of the periosteum to bone formation in guided bone regeneration. A study in monkeys. Clin Oral Implants Res 2000;11:546-54. https://doi.org/10.1034/j.1600-0501.2000.011006546.x
  30. Yang JW, Park HJ, Yoo KH, Chung K, Jung S, Oh HK, et al. A comparison study between periosteum and resorbable collagen membrane on iliac block bone graft resorption in the rabbit calvarium. Head Face Med 2014;10:15. https://doi.org/10.1186/1746-160X-10-15
  31. Jung UW, Lee JS, Lee G, Lee IK, Hwang JW, Kim MS, et al. Role of collagen membrane in lateral onlay grafting with bovine hydroxyapatite incorporated with collagen matrix in dogs. J Periodontal Implant Sci 2013;43:64-71. https://doi.org/10.5051/jpis.2013.43.2.64
  32. Park JY, Jung IH, Kim YK, Lim HC, Lee JS, Jung UW, et al. Guided bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects. Biomater Res 2015;19:15. https://doi.org/10.1186/s40824-015-0038-y
  33. Lim HC, Song KH, You H, Lee JS, Jung UW, Kim SY, et al. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects. J Periodontal Implant Sci 2015;45:46-55. https://doi.org/10.5051/jpis.2015.45.2.46
  34. Minabe M, Kodama T, Kogou T, Tamura T, Hori T, Watanabe Y, et al. Different cross-linked types of collagen implanted in rat palatal gingiva. J Periodontol 1989;60:35-43. https://doi.org/10.1902/jop.1989.60.1.35
  35. Iglhaut J, Aukhil I, Simpson DM, Johnston MC, Koch G. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wounds. J Periodontal Res 1988;23:107-17. https://doi.org/10.1111/j.1600-0765.1988.tb01342.x

Cited by

  1. Analysis of Alveolar Bone Morphology of the Maxillary Central and Lateral Incisors with Normal Occlusion vol.55, pp.9, 2018, https://doi.org/10.3390/medicina55090565
  2. Specific chemical incorporation of l-DOPA and functionalized l-DOPA-hyaluronic acid in Candida antarctica lipase: creating potential mussel-inspired bioadhesives vol.2, pp.10, 2018, https://doi.org/10.1007/s42452-020-03545-w