DOI QR코드

DOI QR Code

Numerical simulation of the effect of bedding layer geometrical properties on the shear failure mechanism using PFC3D

  • Haeri, Hadi (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Marji, Mohammad Fatehi (Department of Mining Engineering, Yazd University)
  • 투고 : 2018.08.13
  • 심사 : 2018.10.30
  • 발행 : 2018.11.25

초록

In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results shows that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilize in failure process. Also the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear test tensile strength was increased by increasing the layer thickness.

키워드

참고문헌

  1. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
  2. Al-Harthi, A.A. (1998), "Effect of planar structures on the anisotropy of ranyah sandstone", Saudi Arabia. Eng. Geol., 50, 49-57.
  3. Amadei, B. (1982), The influence of rock anisotropy on measurement of stresses in- situ, PhD thesis. Berkeley: University of California.
  4. Amadei, B. (1996), "Importance of anisotropy when estimating and measuring in situ stresses in rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(3), 293-325. https://doi.org/10.1016/0148-9062(95)00062-3
  5. Amadei, B., Rogers, J.D. and Goodman, R.E. (1983), "Elastic constants and tensile strength of anisotropic rocks", Proceedings of the 5th international congress of rock mechanics; A189-96.
  6. Backers, T., Stephansson, O. and Rybacki, E. (2002), "Rock fracture toughness testing in mode ii punch-through shear test", Int. J. Rock Mech. Min. Sci., 39, 755-769. https://doi.org/10.1016/S1365-1609(02)00066-7
  7. Barla, G. (1974), "Rock anisotropy: theory and laboratory testing", Rock Mech., 1131-1169.
  8. Berenbaum, R. and Brodie, I. (1959), "The tensile strength of coal", J. Inst. Fuel., 32(222), 320-326.
  9. Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y
  10. Bi, J., Zhou, X.P. and Xu, X.M. (2017), "Numerical simulation of failure process of rock-like materials subjected to impact loads", Int. J. Geomech., 17(3), 04016073. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000769
  11. Chen, C.S., Pan, E. and Amadei, B. (1998), "Determination strength of anisotropic Brazilian tests of deformability and tensile rock using", Int. J. Rock. Mech. Min. Sci., 35(1), 43-61. https://doi.org/10.1016/S0148-9062(97)00329-X
  12. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock. Mech. Min. Sci., 44, 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  13. Cho, N., Martin, C.D. and Sego, D.C. (2008), "Development of a shear zone in brittle rock subjected to direct shear", Int. J. Rock. Mech. Min. Sci., 45, 1335-1346. https://doi.org/10.1016/j.ijrmms.2008.01.019
  14. Chou, Y.C. and Chen, C.S. (2008), "Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure", Int. J. Numer. Anal. Meth. Geomech., 32(3), 219-234. https://doi.org/10.1002/nag.619
  15. Debecker, B. and Vervoort, A. (2009), "Experimental observation of fracture patterns in layered slate", Int. J. Fract., 159, 51-62. https://doi.org/10.1007/s10704-009-9382-z
  16. Exadaktylos, G.E. and Kaklis, K.N. (2001), "Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically", Int. J. Rock. Mech. Min. Sci., 38(2), 227-243. https://doi.org/10.1016/S1365-1609(00)00072-1
  17. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solids, 22, 1205-1218.
  18. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Studies Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  19. Goodman, R.E. (1993), Engineering geology-rock in engineering construction, New York: John Wiley and Sons, Inc.
  20. Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  21. Haeri, H. (2015b), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  22. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.
  23. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  24. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  25. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  26. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  27. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  28. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  29. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soild. Sinic., 5, 555-566.
  30. Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
  31. Hobbs, D.W. (1963), "The strength and stress-strain characteristics of coal in triaxial compression", J. Geol., 72, 214-223.
  32. Hoek, E. (1964), "Fracture of transversely isotropic rock", J. S. Afr. Inst. Min. Met., 64, 501-518.
  33. Horino, F.G. and Ellickson, M.L. (1970), A method of estimating strength of rock containing planes of weakness, Report of Investigation 744. US Bureau of Mines
  34. Itasca Consulting Group Inc (2004), Particle flow code in 2-dimensions (PFC2D), Version 3.10, Minneapolis.
  35. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength mortar", Comput. Mortar, 15(2), 102-111.
  36. Kwasniewski, M. (1993), Mechanical behavior of transversely isotropic rocks, (Ed., Hudson, J.A.) Comprehensive Rock Engineering, vol 1. Pergamon, Oxford.
  37. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48,270-277 https://doi.org/10.1016/j.conbuildmat.2013.06.046
  38. Lee, S.A., Lee, S.H. and Chang, Y.S. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. https://doi.org/10.12989/sem.2015.53.6.1271
  39. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2016.01.017
  40. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2016.01.017
  41. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Materials, 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  42. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Studies Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  43. Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Impact. Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
  44. McLamore, R. and Gray, K.E. (1967), "The mechanical behavior of transversely isotropic sedimentary rocks", T. Am. Soc. Mech. Eng.Series B, 62-76
  45. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  46. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance mortar using response surface method", Comput. Mortar, 17(4), 33-39.
  47. Nasseri, M.H., Rao, K.S. and Ramamurthy, T. (1997), "Failure mechanism in schistose rocks", Int. J. Rock. Mech. Min. Sci., 34(3-4), 219.
  48. Nasseri, M.H.B., Rao, K.S. and Ramamurthy, T. (2003), "Anisotropic strength and deformational behavior of Himalayan schists", Int. J. Rock. Mech. Min. Sci., 40(1), 3-23. https://doi.org/10.1016/S1365-1609(02)00103-X
  49. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  50. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  51. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4) 167-181.,
  52. Pinto, J.L. (1966), "Stresses and strains in anisotropic orthotropic body", Proceedings of the 1st international congress of rock mechanics, Lisbon.
  53. Pinto, J.L. (1970), "Deformability of schistous rocks", Proceedings of the 2nd international congress of rock mechanics.
  54. Pinto, J.L. (1979), "Determination of the elastic co nstants of anisotropic bodies by diametral compression tests", Proceedings of the 4th international congress of rock mechanics.
  55. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock.Mech.Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  56. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
  57. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
  58. Ramamurthy, T. (1993), "Strength, modulus responses of anisotropic rocks", (Ed., Hudson, J.A) Comprehensive rock engineering, vol. 1. Oxford: Pergamon Press.
  59. Rodrigues (1966), "Anisotropy of gr anites: Modulus of elasticity and ultimate strength ellipsoids ,joint systems, slope attitudes, and ther correlations", Proceedings of the 1st international congress of rock mechanics, Lisbon; 1966.
  60. Saeidi, O., Rasouli, V., GeranmayehVaneghi, R., Gholami, R. and Torabi, R. (2013), "A modified failure criterion for transversely isotropic rocks", Geosci. Front, doi: 10.1016/j.gsf.2013.05.00
  61. Salamon, M.D.G. (1968), "Elastic moduli of a stratif ied rock mass", Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 5(6), 519-527. https://doi.org/10.1016/0148-9062(68)90039-9
  62. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  63. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock. Mech. Rock. Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  64. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  65. Silling, S.A. (2000), "Reformulation of elasticity theory for discontinuities and long-range forces", J. Mech. Phys. Solids., 48(1), 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  66. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  67. Singh, J., Ramamurth, T. and Venkatappa, R.G. (1989), "Strength anisotropies in rocks", Ind. Geotech. J., 19(2), 147-166.
  68. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sand stone under Brazilian test conditions", Int. J. Rock. Mech. Min. Sci., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
  69. Tavallali, A. and Vervoort, A. (2010), "Failure of layered sandstone under Brazilian test conditions: Effect of micro-scale parameters on macro-scale behavior", Rock. Mech. Rock. Eng., 43, 641-645. https://doi.org/10.1007/s00603-010-0084-7
  70. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  71. Tien, Y.M. and Kuo, M.C. (2006), "An experimental investigation of the failure mechanism of simulated transversely isotropic rocks", Int. J. Rock. Mech. Min. Sci., 43, 1163-1181. https://doi.org/10.1016/j.ijrmms.2006.03.011
  72. Tien, Y.M. and Tsao, P.F. (2000), "Preparation and mechanical properties of artificial transversely isotropic rock", Int. J. Rock. Mech. Min. Sci., 37(6), 1001-1012. https://doi.org/10.1016/S1365-1609(00)00024-1
  73. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Procedia - Social and Behavioral Sciences, 198, 2280-2289.
  74. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
  75. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  76. Wang, Y., Zhou, X.P. and Kou, M. (2018), "Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles", Ceramics Int., 44(10), 11512-11542. https://doi.org/10.1016/j.ceramint.2018.03.214
  77. Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using numerical manifold method", Constr. Build. Mater., 72, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.082
  78. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", 1143-1156.
  79. Yunteng, W., Zhou, X.P. and Shou, Y. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643.
  80. Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms", Int. J. Fract., 189, 1-32. https://doi.org/10.1007/s10704-014-9959-z
  81. Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80. https://doi.org/10.1007/s10704-013-9876-6
  82. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock. Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001
  83. Zhou, X.P., Bi, J. and Qian, Q.H. (2015a), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock. Mech. Rock. Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
  84. Zhou, X.P., Gu, X.B. and Wang, Y.T. (2015b), "Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks", Int. J. Rock. Mech. Min. Sci., 80, 241-254. https://doi.org/10.1016/j.ijrmms.2015.09.006
  85. Zhou, X.P., Shou, Y.D., Qian, Q.H. and Yu, M.H. (2014), "Threedimensional nonlinear strength criterion for rock-like materials based on the micromechanical method", Int. J. Rock. Mech. Min. Sci., 72, 54-60 https://doi.org/10.1016/j.ijrmms.2014.08.013
  86. Zhou, X.P., Xia, E.M., Yang, H.Q. and Qian, Q.H. (2012), "Different crack sizes analyzed for surrounding rock mass around underground caverns in Jinping I hydropower station", Theor. Appl. Fract. Mech., 57(1), 19-30. https://doi.org/10.1016/j.tafmec.2011.12.004