References
- Arhant, M., Meek, N., Penumadu, D. et al. (2018), "Residual strains using integrated continuous fiber optic sensing in thermoplastic composites and structural health monitoring", Exp. Mech., 58(1), 167-176. https://doi.org/10.1007/s11340-017-0339-2
- Avendano-Valencia, L.D. and Fassois, S.D. (2015), "Natural vibration response based damage detection for an operating wind turbine via Random Coefficient Linear Parameter Varying AR modelling", J. Physics: Conference Series, 628(1), 012073, IOP Publishing. https://doi.org/10.1088/1742-6596/628/1/012073
- Bodeux, J.B. and Golinval, J.C. (2001), "Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures", Smart Mater. Sstruct., 10(3), 479-489. https://doi.org/10.1088/0964-1726/10/3/309
- Coughlin, K. and Tung, K.K. (2005), "Empirical mode decomposition and climate variability", In Hilbert-Huang Transform and its Applications, 223-239, Interdisciplinary Mathematical Sciences.
- Das, S., Saha, P. and Patro, S.K. (2016), "Vibration-based damage detection techniques used for health monitoring of structures: a review", J. Civil Struct. Health Monit., 6(3), 477-507. https://doi.org/10.1007/s13349-016-0168-5
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Dorvash, S., Pakzad, S.N. and LaCrosse, E.L. (2014), "Statistics based localized damage detection using vibration response", Smart Struct. Syst., 14(2), 85-104. https://doi.org/10.12989/sss.2014.14.2.085
- Dosiek, L. and Pierre, J.W. (2013), "Estimating electromechanical modes and mode shapes using the multichannel ARMAX model", IEEE T. Power Syst., 28(2), 1950-1959. https://doi.org/10.1109/TPWRS.2013.2252928
- Fan, X., Li, J. and Hao, H. (2016), "Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model", Smart Struct. Syst., 18(3), 501-523. https://doi.org/10.12989/sss.2016.18.3.501
- Farrar, C.R., Sohn, H. and Worden, K. (2001), "Data normalization: a key for structural health monitoring",No. LAUR-01-4212, Los Alamos National Laboratory.
- Fassois, S.D. and Sakellariou, J.S. (2007), "Time-series methods for fault detection and identification in vibrating structures", Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1851), 411-448. https://doi.org/10.1098/rsta.2006.1929
- Fassois, S.D. and Sakellariou, J.S. (2009), "Statistical time series methods for SHM", Encyclopedia of structural health monitoring.
- Foti, S. and Sabia, D. (2010), "Influence of foundation scour on the dynamic response of an existing bridge", J. Bridge Eng., 16(2), 295-304. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000146
- Fugate, M.L., Sohn, H. and Farrar, C.R. (2001), "Vibration-based damage detection using statistical process control", Mech. Syst. Signal Pr., 5(4), 707-721.
- Gao, Y., Ge, G., Sheng, Z. et al. (2008), "Analysis and solution to the mode mixing phenomenon in EMD", Image and Signal Processing, (CISP'08), 5, 223-227, IEEE.
- Golinval, J.C. (2017), "Damage detection in structures based on principal component analysis of forced harmonic responses", Procedia Eng., 199, 1912-1918. https://doi.org/10.1016/j.proeng.2017.09.449
- Hsu, W.K., Chiou, D.J., Chen, C.W., Liu, M.Y., Chiang, W.L. and Huang, P.C. (2014), "A case study of damage detection in four-bays steel structures using the HHT approach", Smart Struct. Syst., 14(4), 595-615. https://doi.org/10.12989/sss.2014.14.4.595
- Hu, M.H., Tu, S.T. and Xuan, F.Z. (2015), "Statistical moments of ARMA (n, m) model residuals for damage detection", Procedia Eng., 130, 1622-1641. https://doi.org/10.1016/j.proeng.2015.12.351
- Huang, N.E. (2005), "Introduction to Hilbert-Huang transform and some recent developments", Hilbert-Huang Transform in Engineering. Taylor & Francis, Boca Raton, 1-24.
- Huang, N.E. (2014), "Hilbert-Huang transform and its applications", 16, World Scientific Publishing Company.
- Jayawardhana, M., Zhu, X., Liyanapathirana, R. et al. (2015), "Statistical damage sensitive feature for structural damage detection using AR model coefficients", Adv. Struct. Eng., 18(10), 1551-1562. https://doi.org/10.1260/1369-4332.18.10.1551
- Kammer , D.C. (2005), "Sensor set expansion for modal vibration testing", Mech. Syst. Signal Pr., 19(4), 700-713. https://doi.org/10.1016/j.ymssp.2004.06.003
- Kopsaftopoulos, F.P. and Fassois, S.D. (2015), "A vibration model residual-based sequential probability ratio test framework for structural health monitoring", Struct. Health Monit., 14(4), 359-381. https://doi.org/10.1177/1475921715580499
- Kostic, B. and Gul, M. (2017), "Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks", J. Bridge Eng., 22(10), 04017065. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001085
- Kraemer, P. (2011), "Damage diagnosis approaches for structural health and condition monitoring of offshore wind energy plants", University of Siegen, Siegen, Germany.
- Krawczuk, M., Zak, A. and Ostachowicz, W. (2000), "Elastic beam finite element with a transverse elasto-plastic crack", Finite Elem. Anal. Des., 34(1), 61-73. https://doi.org/10.1016/S0168-874X(99)00027-X
- Lakshmi, K. and Rama Mohan Rao, A. (2014), "A robust damage-detection technique with environmental variability combining time-series models with principal components", Nondestruct.Test. Eval., 29(4), 357-376. https://doi.org/10.1080/10589759.2014.949709
- Lakshmi, K. and Rao, A. (2015), "Damage identification technique based on time series models for LANL and ASCE benchmark structures", Insight-Non-Destruct. Test. Condition Monit., 57(10), 580-588. https://doi.org/10.1784/insi.2015.57.10.580
- Lakshmi, K. and Rao, A.R.M. (2016), "Structural damage detection using ARMAX time series models and cepstral distances", Sadhana, 41(9), 1081-1097.
- Lu, Y. and Gao, F. (2005), "A novel time-domain auto-regressive model for structural damage diagnosis", J. Sound Vib., 283(3-5), 1031-1049. https://doi.org/10.1016/j.jsv.2004.06.030
- Mallardo, V. and Alibadi M.H. (2013), "Optimal sensor placement for structural damage and impact identification- A review", Struct. Durability Health Monit., 9(4), 287-323.
- Mosavi, A.A., Dickey, D., Seracino, R. et al. (2012), "Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances", Mech. Syst. Signal Pr., 26, 254-267. https://doi.org/10.1016/j.ymssp.2011.06.009
- Nair, K.K., Kiremidjian, A.S. and Law, K.H. (2006), "Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure", J. Sound Vib., 291(1-2), 349-368. https://doi.org/10.1016/j.jsv.2005.06.016
- Oppenheim, A.V. and R. W. Schafer (1975), "Digital Signal Processing", Prentice-Hall, Englewood Cliffs, New Jersey, 6, 125-136.
- Pandit, S.M. and Wu, S.M. (1983), "Time series and system analysis with applications", (Vol. 3). New York: Wiley.
- Pnevmatikos, N. (2010), "Damage detection of structures using discrete wavelet transform", Proceedings of the 5th World Conference on Structural Control and Monitoring.
- Pnevmatikos, N.G., Blachowski, B., Hatzigeorgiou, G.D. and Swiercz, A. (2016), "Wavelet analysis based damage localization in steel frames with bolted connections", Smart Struct. Syst., 18(6), 1189-1202. https://doi.org/10.12989/sss.2016.18.6.1189
- Rao A.R.M. and Anandakumar, G. (2008), "Optimal sensor placement techniques for system identification and health monitoring of civil structures", Smart Struct. Syst., 4(4), 465-492. https://doi.org/10.12989/sss.2008.4.4.465
- Rao, A.R.M. and Lakshmi, K. (2015), "Damage diagnostic technique combining POD with time-frequency analysis and dynamic quantum PSO", Meccanica, 50(6), 1551-1578. https://doi.org/10.1007/s11012-015-0106-3
- Rao, A.R.M., Lakshmi, K. and Krishna Kumar, S. (2015), "Detection of delamination in laminated composites with limited measurements combining PCA and dynamic QPSO", Adv. Eng. Softw., 86, 85-106. https://doi.org/10.1016/j.advengsoft.2015.04.005
- Rosales, M.J. and Liyanapathirana, R. (2017), "Data driven innovations in structural health monitoring", J. Phys.: Conference Series, 842(1), 012012, IOP Publishing. https://doi.org/10.1088/1742-6596/842/1/012012
- Sakaris, C.S., Sakellariou, J.S. and Fassois, S.D. (2015), "A Generalized Functional Model Based Method for Vibration- Based Damage Precise Localization in 3D Structures", J. Physics: Conference Series, 628(1), 012008, IOP Publishing. https://doi.org/10.1088/1742-6596/628/1/012008
- Sakaris, C.S., Sakellariou, J.S. and Fassois, S.D. (2017), "Random-vibration-based damage detection and precise localization on a lab-scale aircraft stabilizer structure via the generalized functional model based method", Struct. Health Monit., 16(5), 594-610. https://doi.org/10.1177/1475921717707903
- Shen, S.S.P., Shu, T., Huang, N.E. et al. (2005), "HHT analysis of the nonlinear and non-stationary annual cycle of daily surface air temperature data", In Hilbert-Huang Transform and Its Applications, 187-209, Interdisciplinary Mathematical Sciences.
- Sohn, H. and Farrar, C.R. (2001), "Damage diagnosis using time series analysis of vibration signals", Smart Mater. Struct., 10(3), 446-451. https://doi.org/10.1088/0964-1726/10/3/304
- Tanner, N.A., Wait, J.R., Farrar, C.R. et al. (2003), "Structural health monitoring using modular wireless sensors", J. Intel. Mat. Syst. Str., 14(1), 43-56. https://doi.org/10.1177/1045389X03014001005
- Ugalde, U., Anduaga, J., Martinez, F. et al. (2015), "Novel SHM method to locate damages in substructures based on VARX models", J. Phys.: Conference Series, 628(1), 012013, IOP Publishing. https://doi.org/10.1088/1742-6596/628/1/012013
- Xie, L. and Mita, A. (2017), "An innovative substructure damage identification approach for shear structures based on ARMAX models", Procedia Eng., 188, 119-124. https://doi.org/10.1016/j.proeng.2017.04.464
- Zhang, Q.W. (2007), "Statistical damage identification for bridges using ambient vibration data", Comput. Struct., 85(7-8), 476-485. https://doi.org/10.1016/j.compstruc.2006.08.071