Acknowledgement
Supported by : Universiti Tenaga Nasional
References
- Akyildiz, I.F. and Stuntebeck, E.P. (2006), "Wireless underground sensor networks: Research challenges", Ad Hoc Networks, 4, 669-686. https://doi.org/10.1016/j.adhoc.2006.04.003
- Almeida, V.A.D., Baptista, F.G. and Aguiar, P.R. (2015), "Piezoelectric transducers assessed by the pencil lead break for impedance-based structural health monitoring", IEEE Sensor. J., 15, 693-702. https://doi.org/10.1109/JSEN.2014.2352171
- Annamdas, V.G.M., Bhalla, S. and Soh C.K. (2017), "Applications of structural health monitoring technology in Asia", Struct. Health Monit., 16, 324-346. https://doi.org/10.1177/1475921716653278
- Aszkler, C. (2005), "Chapter 5: Acceleration, Shock and Vibration Sensors," from Sensor Technology Handbook.
- Bai, Z., Chen, S., Xiao, Q., Jia, L., Zhao, Y. and Zeng, Z. (2017), "Compressive sensing of phased array ultrasonic signal in defect detection: Simulation study and experimental verification", Struct. Health Monit., doi: 10.1177/1475921717701462.
- Baifeng, J. and Weilian, Q. (2008), "The research of acoustic emission techniques for non destructive testing and health monitoring on civil engineering structures", Proceedings of the International Conference on Condition Monitoring and Diagnosis, 21-24 April 2008, Beijing.
- Bao, Y., Beck, J.L. and Li, H. (2011), "Compressive sampling for accelerometer signals in structural health monitoring", Struct. Health Monit., 10, 235-246. https://doi.org/10.1177/1475921710373287
- Bao, Y., Shi, Z., Wang, X. and Li, H. (2017), "Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717721457.
- Barbezat, M., Brunner, A., Flueler, P., Huber, C. and Kornmann, X. (2004), "Acoustic emission sensor properties of active fibre composite elements compared with commercial acoustic emission sensors", Sensor. Actuat. A: Phys., 114, 13-20. https://doi.org/10.1016/j.sna.2004.01.062
- Basumallick, N., Chatterjee, I., Biswas, P. and Dasgupta, K.B.S. (2012), "Fiber Bragg grating accelerometer with enhanced sensitivity", Sensor. Actuat. A: Phys., 173(1), 108-115. https://doi.org/10.1016/j.sna.2011.10.026
- Bhuiyan, M.Z.A., Wang, G., Cao, J. and Wu, J. (2015), "Deploying wireless sensor networks with fault-tolerance for structural health monitoring", IEEE T. Comput., 64, 382-395. https://doi.org/10.1109/TC.2013.195
- Binici, B. (2005), "An analytical model for stress-strain behavior of confined concrete", Eng. Struct., 27, 1040-1051. https://doi.org/10.1016/j.engstruct.2005.03.002
- Bogdabovic, B.A., Mufti, A.A., Bagchi, A. (2005), "SHM data interpretation and structural condition assessment of the Manitoba Golden Boy", Proceedings of the SPIE 5767, 213-224.
- Capoluongo, P., Ambrosino, C., Campopiano, S., Cutolo, A., Giordano, M., Bovio, I., Lecce, L. and Cusano, A. (2007), "Modal analysis and damage detection by Fiber Bragg grating sensors", Sensor. Actuat. A: Phys., 133, 415-424. https://doi.org/10.1016/j.sna.2006.04.018
- Casas, J.R. (2003), "Fiber optic sensors for bridge monitoring", J. Bridge Eng., 8(6), 362-373. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(362)
- Casciati, S., Chassiakos, A.G. and Masri, S.F. (2014), "Toward a paradigm for civil structural control", Smart Struct. Syst., 14(5), 981-1004. https://doi.org/10.12989/sss.2014.14.5.981
- Cazzulani, G., Moschini, S., Resta, F. and Ripamonti, F. (2013), "A diagnostic logic for preventing structural failure in concrete displacing boom", Automat. Constr., 35, 499-506. https://doi.org/10.1016/j.autcon.2013.06.004
- Chen, J., Cheng, F., Xiong, F., Ge, Q. and Zhang, S. (2017), "An experimental study: Fiber Bragg grating-hydrothermal cycling integration system for seepage monitoring of rockfill dams", Struct. Health Monit., 16, 50-61. https://doi.org/10.1177/1475921716661874
- Chen, Z., Li, H. and Bao, Y. (2018), "Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach", Struct. Health Monit., doi: 10.1177/1475921718788703.
- Chen, Z., Bao, Y., Li, H. and Spencer, B.F. (2017), "A novel distribution regression approach for data loss compensation in structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717745719.
- Cheng, L., Zhang, H. and Li, Q. (2007), "Design of a capacitive flexible weighing sensor for vehicle WIM system", Sensors, 7, 1530-1544. https://doi.org/10.3390/s7081530
- Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer, B.J. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", J. Steel Struct., 8, 267-275.
- Choi, M., Shrestha, M.M., Lee J. and Park, C. (2017), "Development of a laser-powered wireless ultrasonic device for aircraft structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921716686963.
- Civionics (2009), Custom wireless sensing and control solutions. Available on: http://Civionics.com/uncategorized/about-Civionics (accessed on 22 December 2011).
- Currano, L.J., Bauman, S., Churaman, W., Peckerar, M., Wienke, J., Kim, S., Yu, M. and Balachandran, B. (2008), "Latching ultra-low power MEMS shock sensors for acceleration monitoring", Sensor. Actuat. A: Phys., 147, 490-497. https://doi.org/10.1016/j.sna.2008.06.009
- Daly, P. (1993), "Navstar GPS and GLONASS: Global satellite navigation systems", Electro Commun. Eng. J., 5(6), 349-357. https://doi.org/10.1049/ecej:19930069
- Edward, S., Kerop, J. and Ratan, J.C. (2004), "Wireless intelligent sensor network for autonomous", Struct. Health Monit., Available on: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.4283.
- Fang, K., Liu, C. and Teng, J. (2017), "Cluster-based optimal wireless sensor deployment for structural health monitoring", Struct. Health Monit., doi: 10.1177/1475921717689967.
- Farrar, C.R., Allen, D.W., Park, G., Ball, S. and Masquelier, M.P. (2006), "Coupling sensing hardware with data interrogation software for structural health monitoring", Shock Vib., 13, 519-530. https://doi.org/10.1155/2006/164382
- Feng, S. and Jia, J. (2017), "Acceleration sensor placement technique for vibration test in structural health monitoring using microhabitat frog-leaping algorithm", Struct. Health Monit., doi: 10.1177/1475921717689967.
- Guardalben, L., Villalba, L.J.G., Buiati, F., Sobral, J.B.M. and Camponogara, E. (2010), "Self-configuration and selfoptimization process in heterogeneous wireless networks", Sensor, 11, 425-454. https://doi.org/10.3390/s110100425
- Guemes, J.A. and Menendez, J.M. (2002), "Response of Bragg grating fiber-optic sensors when embedded in composite laminates", Compos. Sci. Technol., 62, 959-966. https://doi.org/10.1016/S0266-3538(02)00010-6
- Guy, K. and Jeff, S. (2011), "Principles of piezoelectri accelerometers", Sensors, Available on: http://www.sensorsmag.com>Sensors>Acceleration/Vibration (accessed on 10 December 2011).
- Ha, D.W., Park, H.S., Choi, S.W. and Kim, Y. (2013), "A wireless MEMS-based inclinometer sensor node for structural health monitoring", Sensors, 13, 16090-16104. https://doi.org/10.3390/s131216090
- Hackmann, G., Guo, W., Yan, G., Sun, Z., Lu, C. and Dyke, S. (2014), "Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks", IEEE T. Para. Distr. Sys., 25, 63-72. https://doi.org/10.1109/TPDS.2013.30
- Han, B., Yu, Y. and Ou, J. (2008), "Development of a wireless stress/strain measurement system integrated with pressuresensitive nickel powder-filled cement-based sensors", Sensor. Actuat. A: Phys., 147, 536-543. https://doi.org/10.1016/j.sna.2008.06.021
- Hassan, M.K., Zain, M.F.M, Hannan, M.A. and Jamil, M. (2010), "Sensor placement technique and GUI system for bridge girder monitoring", Int. J. Civil Struct. Eng., 1, 583-590.
- Hassan, M.K., Zain, M.F.M., Jamil, M. and Hannan, M.A. (2011), "Sensor network for bridge girder crack identification and monitoring system", Proceedings of the IEEE Int. Conf. Intelligent Computing and Intelligent System (ICIS2011), Kuala Lumpur.
- Hong, K., Lee, J., Choi, S.W., Kim, Y. and Park, H.S. (2013), "A strain-based load identification model for beams in building structures", Sensors, 13, 9909-9920. https://doi.org/10.3390/s130809909
- Hu, Y., Rieutort-Louis, W.S., Sanz-Robinson, J., Huang, L., Glisic, B., Sturm, J.C., Wagner, S. and Verma, N. (2014), "Large-scale sensing system combining large-area electronics and CMOS ICs for structural-health monitoring", IEEE J. Solid-State Circuits, 49, 513-523. https://doi.org/10.1109/JSSC.2013.2295979
- Huang, Y., Beck, J.L., Wu, S. and Li, H. (2014), "Robust Bayesian compressive sensing for signals in structural health monitoring", Comput.-Aided Civil Infrastruct. Eng., 29, 160-179. https://doi.org/10.1111/mice.12051
- Hyeonseok, L., Hyun-Jun, P., Sohn, H. and Il-Bum, K. (2010), "Integrated guided wave generation and sensing using a single laser source and optical fibers", Meas. Sci. Technol., 21, 105207-11. https://doi.org/10.1088/0957-0233/21/10/105207
- Jang, W.S., Healy, W.M. and Skibniewski, M.J. (2008), "Wireless sensor networks as part of a web-based building environmental monitoring system", Automat. Constr., 17, 729-736. https://doi.org/10.1016/j.autcon.2008.02.001
- Jo, H., Sim, S.H., Tatkowski, A., Spencer, B.F. and Nelson, M.E. (2013), "Feasibility of displacement monitoring using low-cost GPS receivers", Struct. Control Health Monit., 20, 1240-1254. https://doi.org/10.1002/stc.1532
- Kamel, I. and Juma, H. (2011), "A lightweight data integrity scheme for sensor networks", Sensors, 11, 4118-4136. https://doi.org/10.3390/s110404118
- Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H. and Celler, B.G. (2006). "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring", IEEE. T. Inf. Technol. Biomed., 10, 156-167. https://doi.org/10.1109/TITB.2005.856864
- Kareem, A., Kijewski-Correa, T. and Bashor, R. (2005), "GPS: A new tool for structural health monitoring", APT Bulletin: J. Preservation Technol., 36(1), 13-18.
- Kerrouche, A., Boyle, W., Sun, T. and Grattan, K. (2010), "Design and in-the-field performance evaluation of compact FBG sensor system for structural health monitoring applications", Sensor. Actuat. A: Phys., 151, 107-112. https://doi.org/10.1016/j.snb.2010.09.039
- Kim, J.T., Nguyen, K.D. and Huynh, T.C. (2013), "Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique", Smart Struct. Syst., 12(3), 381-397. https://doi.org/10.12989/sss.2013.12.3_4.381
- Kinet, D., Megret, P., Goossen, W., Heider, D. and Caucheteur, C. (2014), "Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions", Sensors, 14, 7394-7419. https://doi.org/10.3390/s140407394
- Kominami, D., Sugano, M., Murata, M. and Hatauchi, T. (2010), "Energy-efficient receiver-driven wireless mesh sensor networks", Sensors, 11, 111-137. https://doi.org/10.3390/s110100111
- Lee, D., Jeon, H. and Myung, H. (2014), "Pose-graph optimized displacement estimation for structural displacement monitoring", Smart Struct. Syst., 14(5), 943-960. https://doi.org/10.12989/sss.2014.14.5.943
- Lei, Q., Shenfang, Y., Xiaoling, S. and Tianxiang, H. (2012), "Design of piezoelectric transducer layer with electromagnetic shielding and high connection reliability", Smart Mater. Struct., 21, 075032-14. https://doi.org/10.1088/0964-1726/21/7/075032
- Leng, J. and Asundi, A. (2003), "Structural health monitoring of smart composite materials by using EFPI and FBG sensors", Sensor. Actuat. A: Phys., 103, 330-340. https://doi.org/10.1016/S0924-4247(02)00429-6
- Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Reviews on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
- Liu, P., Lim, H.J., Yang, S., Sohn, H., Lee, C.H., Yi, Y., Kim, D., Jung, J. and Bae, I. (2017), "Development of a "stick-and-detect" wireless sensor node for fatigue crack detection", Struct. Health Monit., 16, 153-163. https://doi.org/10.1177/1475921716666532
- Liu, Z., Yu, Y., Liu, G., Wang, J. and Mao, X. (2014), "Design of a wireless measurement system based on WSNs for large bridges", Measurement, 50, 324-330. https://doi.org/10.1016/j.measurement.2014.01.013
- Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer, E., Farrar, C.R., Sohn, H., Allen, D.W., Nadler, B. and Wait, J.R. (2004), "Design and performance validation of a wireless sensing unit for structural monitoring applications", Struct. Eng. Mech., 17(3), 393-408. https://doi.org/10.12989/sem.2004.17.3_4.393
- Lynch, J.P. and Loh, K.J. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Digest, 38, 91-130. https://doi.org/10.1177/0583102406061499
- Lynch, J.P., Partridge, A., Law, K.H., Kenny, T.W., Kiremidjian, A.S. and Carryer, E. (2003), "Design of piezoresistive MEMS-based accelerometer for integration with wireless sensing unit for structural monitoring", J. Aerosp. Eng., 16, 108-114. https://doi.org/10.1061/(ASCE)0893-1321(2003)16:3(108)
- Maheshwari, M., Tjin, S.C. and Asundi, A. (2016), "Combined fiber Bragg grating and fiber optic polarimetric sensors on a single fiber for structural health monitoring of two-dimensional structures", Struct. Health Monit., 15, 599-609. https://doi.org/10.1177/1475921716654132
- Malekzadeh, M., Gul, M., Kwon, I.B. and Catbas, N. (2014), "An integrated approach for structural health monitoring using an in-house built fiber optic system and non-parametric data analysis", Smart Struct. Syst., 14(5), 917-942. https://doi.org/10.12989/sss.2014.14.5.917
- Mufti, A.A. (2003), "Integration of sensing in civil structures: development of the new discipline of Civionics", Struct. Health Monit. Intel. Infrastruct., 1, 119-129.
- Mufti, A.A., Bakht, B., Tadros, G., Horosko, A.T. and Sparks, G. (2007), "Civionics-a new paradigm in design, evaluation, and risk analysis of civil structures", J. Int. Mat. Syst. Str., 18, 757-763. https://doi.org/10.1177/1045389X06074572
- Mufti, A.A. and Neale, K.W. (2008), "State-of-the-art of FRP and SHM applications in bridge structures in Canada", Compos. Res., 2, 60-69.
- Nagayama, T. (2007), Structural Health Monitoring Using Smart Sensors, PhD Dissertation, University of Illinois Urbana-Champaign, Urbana, IL USA.
- Nasrollahi, A., Deng, W., Ma, Z. and Rizzo, P. (2017), "Multimodal structural health monitoring based on active and passive sensing", Struct. Health Monit., 10.1177/1475921717699375 .
- Grady, A. (2000), "Transducer/sensor excitation and measurement techniques", Analog Dialogue, 34, 1-6.
- Omega (2012), The Thermosistor. http://www.princeton.edu/-cavalab/tutorials/public/Thermocouples.pdf (accessed on 11 December 2016).
- Park, G., Rosing, T., Todd, M.D., Farrar, C.R. and Hodgkiss, W. (2008), "Energy harvesting for structural health monitoring sensor networks", J. Infrastruct. Syst., 14, 64-79. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64)
- Peng, C., Fu, Y. and Spencer, B.F. (2017), Sensor Fault Detection, Identification, and Recovery Techniques for Wireless Sensor Networks: A Full-scale Study. In ANCRiSST2017.
- Peng-hui, L., Hong-ping, Z., Hui, L. and Shun, W. (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., 15(1), 227-244. https://doi.org/10.12989/sss.2015.15.1.227
- Rivera, E., Mufti, A.A. and Thomson, D.J. (2007), "Civionics for structural health monitoring", Can. J. Civil Eng., 34, 430-437. https://doi.org/10.1139/l06-159
- Roberts, G.W., Meng, X. and Dodson, A.H. (2004). "Integrating a global positioning system and accelerometers to monitor the deflection of bridges", J. Surv. Eng., 130(2), 65-72. https://doi.org/10.1061/(ASCE)0733-9453(2004)130:2(65)
- Sadeghian, V. and Vecchio, F. (2015), "A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures", Comput. Concrete, 16(2), 287-309. https://doi.org/10.12989/cac.2015.16.2.287
- Sbarufatti, C., Manes, A. and Giglio, M. (2014), "Application of sensor technologies for local and distributed structural health monitoring", Struct. Control Health Monit., 21, 1057-1083. https://doi.org/10.1002/stc.1632
- Seok, B.I., Stefan, H. and Young, J.K. (2013), "Summary review of GPS technology for structural health monitoring", J. Struct. Eng., 139, 1653-1664. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000475
- Shen, Y. and Giurgiutiu, V. (2014), "Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors", J. Int. Mat. Syst. Str., 25, 506-520. https://doi.org/10.1177/1045389X13500572
- Shih, J.L., Kobayashi, M. and Jen, C.K. (2010), "Flexible ultrasonic transducers for structural health monitoring of pipes at high temperatures", IEEE T. Ultrason. Ferr., 57(9), 2103-2110. https://doi.org/10.1109/TUFFC.2010.1659
- Soil (2011), Vibrating wire crack meter. https://www.bsil.com.cn/Downloads/DataSheets/J2_VW%20Crackmeter_ds.pdf (accessed on 11 January 2011).
- Stabile, T.A., Giocoli, A., Perrone, A., Palombo, A., Pascucci, S. and Pignatti, S. (2012), "A new joint application of non-invasive remote sensing techniques for structural health monitoring", J. Geophys. Eng,. 9, 53-63. https://doi.org/10.1088/1742-2132/9/4/S53
- Sun, M., Staszewski, W. and Swamy, R. (2010), "Smart sensing technologies for structural health monitoring of civil engineering structures", Adv. Civil Eng., 2010(2010), Article ID 724962, 13 pages.
- Tastani, S. and Pantazopoulou, S. (2008), "Detailing procedures for seismic rehabilitation of reinforced concrete members with fiber reinforced polymers", Eng. Struct., 30, 450-461. https://doi.org/10.1016/j.engstruct.2007.03.028
- Taylor, S.G., Raby, E.Y., Farinholt, K.M., Park, G. and Todd, M. (2016), "Active-sensing platform for structural health monitoring: Development and deployment", Struct. Health Monit., 15, 413-422. https://doi.org/10.1177/1475921716642171
- Teng, J., Lu, W., Wen, R. and Zhang, T. (2015), "Instrumentation on structural health monitoring systems to real world structures", Smart Struct. Syst., 15(1), 151-167. https://doi.org/10.12989/sss.2015.15.1.151
- Tensometer (2012), http://en.wikipedia.org/wiki/Tensometer (accessed on 14 December 2012).
- Ting-Hua, Y., Hong-Nan, L. and Xu-Dong, Z. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21, 105033-9. https://doi.org/10.1088/0964-1726/21/10/105033
- Tondreau, G. and Deraemaeker, A. (2013), "Local modal filters for automated data-based damage localization using ambient vibrations", Mech. Syst. Signal Pr., 39, 162-180. https://doi.org/10.1016/j.ymssp.2013.03.020
- Ubertini, F., Laflamme, S., Ceylan, H., Materazzi, L., Cerni, G., Saleem, H., Alessandro, A. and Corradini, A. (2014), "Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors", Smart Mater. Struct., 23, 045023. https://doi.org/10.1088/0964-1726/23/4/045023
- Venugopalan, T., Sun, T. and Grattan, K. (2008), "Long period grating-based humidity sensor for potential structural health monitoring", Sensor. Actuat. A: Phys., 148, 57-62. https://doi.org/10.1016/j.sna.2008.07.015
- Wang, D.H. and Liao, W.H. (2006), "Wireless transmission for health monitoring of large structures", IEEE T. Instrum. Meas., 55, 972-981. https://doi.org/10.1109/TIM.2006.873801
- Wang, Y.H., Lee, C.Y. and Chiang, C.M.A. (2007), "MEMS-based air flow sensor with a free-standing micro-cantilever structure", Sensors, 7, 2389-2401. https://doi.org/10.3390/s7102389
- Watson, C., Watson, T. and Coleman, R. (2007), "Structural monitoring of cable-stayed bridge: Analysis of GPS versus modeled deflections", J. Surv. Eng., 133(1), 23-28. https://doi.org/10.1061/(ASCE)0733-9453(2007)133:1(23)
- Wong, L., Chiu, W.K. and Kodikara, J. (2017), "Using distributed optical fibre sensor to enhance structural health monitoring of a pipeline subjected to hydraulic transient excitation", Struct. Health Monit., doi: 10.1177/1475921717691036.
- Xiao, H., Li, H. and Ou, J. (2011), "Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam", Sensor. Actuat. A: Phys., 167, 581-587. https://doi.org/10.1016/j.sna.2011.03.012
- Yang, C.C. and Hsu, Y.L. (2009), "Development of a wearable motion detector for tele-monitoring and real-time identification of physical activity", Telemed. J. E. Health, 15, 62-72. https://doi.org/10.1089/tmj.2008.0060
- Yang, Y. and Nagarajaiah, S. (2016), "Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure", Mech.Syst. Signal Pr., 74, 165-182. https://doi.org/10.1016/j.ymssp.2015.11.009
- Ye, X. W., Su, Y. H. and Han, J.P. (2014), "Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review", Scientific World J., 2014 (2014), Article ID 652329, 11 pages. http://dx.doi.org/10.1155/2014/652329.
- Yi, TH., Li, H.N. and Zhang, XD. (2015), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart Struct. Syst., 15(1), 191-207. https://doi.org/10.12989/sss.2015.15.1.191
- Yu, L. and Tian, Z. (2013), "Lamb wave structural health monitoring using a hybrid PZT-laser vibrometer approach", Struct. Health Monit., 12, 469-483. https://doi.org/10.1177/1475921713501108
- Zeng, Y., Sreenan, C.J., Sitanayah, L., Xiong, N., Park, H. and Zheng, G. (2011), "An emergency-adaptive routing scheme for wireless sensor networks for building fire hazard monitoring", Sensors, 11, 2899-2919. https://doi.org/10.3390/s110302899
- Zhang, J., Zhou, Y. and Li, P.J. (2015), "Practical issues in signal processing for structural flexibility identification", Smart Struct. Syst., 15(1), 209-225. https://doi.org/10.12989/sss.2015.15.1.209
- Zhang, Y., Liu, W., Zhang, H., Yang, J. and Zhao, H. (2011), "Design and analysis of a differential waveguide structure to improve magnetostrictive linear position sensors", Sensors, 11, 5508-5519. https://doi.org/10.3390/s110505508
Cited by
- Comparison of multiple monitoring techniques for the testing of a scale model timber Warren truss vol.6, pp.None, 2018, https://doi.org/10.1139/facets-2021-0001
- Design and Validation of a Scalable, Reconfigurable and Low-Cost Structural Health Monitoring System vol.21, pp.2, 2021, https://doi.org/10.3390/s21020648
- Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.181
- Measurement of Acceleration Response Functions with Scalable Low-Cost Devices. An Application to the Experimental Modal Analysis vol.21, pp.19, 2021, https://doi.org/10.3390/s21196637
- Toward Structural Health Monitoring of Civil Structures Based on Self-Sensing Concrete Nanocomposites: A Validation in a Reinforced-Concrete Beam vol.15, pp.1, 2021, https://doi.org/10.1186/s40069-020-00451-8