과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Shandong Province, China Postdoctoral Science Foundation
참고문헌
- Andrawes, B. and DesRoches, R. (2007), "Effect of ambient temperature on the hinge opening in bridges with shape memory alloy seismic restrainers", Eng. Struct., 29(9), 2294-2301. https://doi.org/10.1016/j.engstruct.2006.11.028
- Araki, Y., Endo, T., Omori, T., Sutou, Y., Koetaka. Y., Kainuma, R. and Ishida K. (2011), "Potential of superelastic Cu-Al-Mn alloy bars for seismic applications", Earthq. Eng. Struct. D., 40(1), 107-115. https://doi.org/10.1002/eqe.1029
- Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components from the prototype to the model", Struct. Control. Health. Monit, 16(7-8), 751-765. https://doi.org/10.1002/stc.328
- Casciati, S., Faravelli, L. and Vece, M. (2017), "Investigation on the fatigue performance of Ni-Ti thin wires", Struct. Control Health Monit., 24, e1855. doi: 10.1002/stc.1855.
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Casciati, S. and Marzi, A. (2011), "Fatigue tests on SMA bars in span control", Eng. Struct., 33(33), 1232-1239. https://doi.org/10.1016/j.engstruct.2010.12.045
- Chang, KC., Soong, TT., Oh, ST. and Lai, ML. (1992), "Effect of ambient temperature on viscoelastically damped structure ", J. Struct. Eng.- ASCE, 118(7), 1955-1973. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1955)
- Chang, KC., Soong, TT., Oh, ST. and Lai, ML. (1995), "Seismic behavior of steel frame with added viscoelastic dampers", J. Struct. Eng.- ASCE, 121(10), 1418-1426. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1418)
- Chopra, AK. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall: Englewood Cli4s, NJ.
- Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. D., 31(3), 561-582. https://doi.org/10.1002/eqe.144
- de Castro Bubani, F., Sade, M., Torra, V., Lovey, F. and Yawny, A. (2013), "Stress induced martensitic transformations and phases stability in Cu-Al-Be shape-memory single crystals", Mater. Sci. Eng., 583, 129-139. https://doi.org/10.1016/j.msea.2013.06.071
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations", J Earthq. Eng., 8(3), 415-429. https://doi.org/10.1080/13632460409350495
- Fahnestock, L.A., Ricles, J.M. and Sause R. (2007), "Experimental evaluation of a large-scale buckling-restrained braced frame", J. Struct. Eng. - ASCE, 133(9), 1205-1214. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1205)
- Fang, C., Yam MCH, Lam ACC and Xie, LK. (2016), "Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts", J. Constr. Steel Res., 94, 122-136.
- FEMA. (1997), NEHRP Recommended provisions for seismic regulations for new buildings and other structures, Federal Emergency Management Agency, Washington, DC.
- Guo, W.W., Daniel, Y., Montgomery, M. and Christopoulos, C. (2016), "Thermal-mechanical model for predicting the wind and seismic response of viscoelastic dampers.", J. Eng. Mech. - ASCE, 142(10), 04016067. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001121
- Hou, H., Li, H., Qiu, C. and Zhang, Y. (2017), "Effect of hysteretic properties of SMAs on seismic behavior of self-centering concentrically braced frames", Struct. Control Health Monit., https://doi.org/10.1002/stc.2110.
- Ji, X., Kato, M., Wang, T., Hitaka, T. and Nakashima, M. (2009), "Effect of gravity columns on mitigation of story drift concentration for concentrically braced steel frames", J. Constr. Steel Res., 65(12), 2148-2156. https://doi.org/10.1016/j.jcsr.2009.07.003
- Katariya P.V., Panda, S.K., Hirwani C.K., Mehar K. and Thakare O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/SSS.2017.20.5.595
- Kiggins, S. and Uang, CM. (2006), "Reducing residual drift of buckling-restrained braced frames as a dual system", Eng. Struct., 28(11), 1525-1532. https://doi.org/10.1016/j.engstruct.2005.10.023
- Krawinkler, H. and Seneviratna, G. (1998), "Pros and cons of a pushover analysis of seismic performance evaluation", Eng. Struct., 20, 452-464. https://doi.org/10.1016/S0141-0296(97)00092-8
- Liu, J.L., Zhu, S., Xu, Y.L. and Zhang, Y.F. (2011), "Displacement-based design approach for highway bridges with SMA isolators", Smart Struct. Syst., 8(2), 173-190. https://doi.org/10.12989/sss.2011.8.2.173
- MathWorks, MATLAB - The Language of Technical Computing, Version 2011a. (2011), MathWorks, Natick, MA.
- McCormick, J., Aburano, H., Ikenaga, M. and Nakashima, M. (2008), "Permissible residual deformation levels for building structures considering both safety and human elements", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing. China, Paper No. 05-06-0071.
- McCormick, J., DesRoches, R., Fugazza, D. and Auricchio, F. (2007), "Seismic assessment of concentrically braced steel frames with shape memory alloy braces", J. Struct. Eng. - ASCE, 133(6), 862-870. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(862)
- Mckenna, F. and Fenves, G.L. (2013), Open system for earthquake engineering simulation (OpenSees), Pacific earthquake engineering research center. University of California.
- Moehle, J.P. (1992), "Displacement-based design of RC structures subjected to earthquakes", Earthq. Spectra, 8(3), 403-428. https://doi.org/10.1193/1.1585688
- Newmark, NM. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94.
- Ozbulut, O.E. and Hurlebaus, S. (2010), "Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects", Eng. Struct., 32(1), 238-249. https://doi.org/10.1016/j.engstruct.2009.09.010
- Ozbulut, O.E. and Hurlebaus, S. (2012), "Application of an SMAbased hybrid control device to 20-story nonlinear benchmark building", Earthq. Eng. Struct. D., 41(13), 1831-1843. https://doi.org/10.1002/eqe.2160
- Ozbulut, O.E., Hurlebaus, S. and DesRoches, R. (2011), "Seismic response control using shape memory alloys, a review", J. Intel. Mat. Syst. Str., 22(14),1531-1549. https://doi.org/10.1177/1045389X11411220
- Ozbulut, O.E. and Silwal B. (2016), "Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes", Smart Struct. Syst., 17(5), 709-724. https://doi.org/10.12989/sss.2016.17.5.709
- Park J.K. and Park S. (2016), "Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys", Smart Struct. Syst., 17(1), 135-147. https://doi.org/10.12989/sss.2016.17.1.135
- Priestley, M.J.N. and Kowalsky, M.J. (2000), "Direct displacement-based seismic design of concrete buildings", Bull. New Zeal Soc. Earthq. Eng., 33(4), 421-444.
- Qiu, C., Li, H., Ji, K., Hou, H. and Tian, L. (2017), "Performance-based plastic design approach for multi-story self-centering concentrically braced frames using SMA braces ", Eng. Struct., 153, 628-638. https://doi.org/10.1016/j.engstruct.2017.10.068
- Qiu, C., Zhang, Y., Li, H., Qu, B., Hou, H. and Tian, L. (2018a), "Seismic performance of concentrically braced frames with non-buckling braces: a comparative study", Eng. Struct., 154, 93-102. https://doi.org/10.1016/j.engstruct.2017.10.075
- Qiu, C., Zhang, Y., Qi, J. and Li, H. (2018b), "Seismic behavior of properly designed CBFs equipped with NiTi SMA braces", Smart Struct. Syst., 21(4), 479-491. https://doi.org/10.12989/SSS.2018.21.4.479
- Qiu, C. and Zhu, S. (2014), "Characterization of cyclic properties of superelastic monocrystalline Cu-Al-Be SMA wires for seismic applications", Constr. Build. Mater., 72, 219-230. https://doi.org/10.1016/j.conbuildmat.2014.08.065
- Qiu, C. and Zhu, S. (2016), "High-mode effects on seismic performance of multi-story self-centering braced steel frames", J. Constr. Steel Res., 119, 133-143. https://doi.org/10.1016/j.jcsr.2015.12.008
- Qiu, C. and Zhu, S. (2017), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. D., 46(1), 117-137. https://doi.org/10.1002/eqe.2777
- Qu, B., Sanchez-Zamora, F. and Pollino, M. (2014), "Mitigation of inter-story drift concentration in multi-story steel concentrically braced frames through implementation of rocking cores", Eng. Struct., 70(9), 208-217. https://doi.org/10.1016/j.engstruct.2014.03.032
- Qu, B., Sanchez-Zamora, F. and Pollino, M. (2015), "Transforming seismic performance of deficient steel concentrically braced frames through implementation of rocking cores", J. Struct. Eng. - ASCE , 141(5), 04014139. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001085
- Sabelli, R., Mahin, S. and Chang, C. (2003), "Seismic demands on steel braced frame buildings with buckling-restrained braces", Eng. Struct., 25(5), 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X
- Sade, M., de Castro Bubani, F., Lovey, F.C. and Torra, V. (2014), "Effect of grain size on stress induced martensitic transformations in a Cu-Al-Be polycrystalline shape-memory alloy. Pseudoelastic cycling effects and microstructural modifications", Mater. Sci. Eng.: A, 609, 300-309. https://doi.org/10.1016/j.msea.2014.05.018
- Sommerville, P., Smith, N.F., Punyamurthula, S. and Sun, J. (1997), Development of ground motion time histories for Phase 2 of the FEAM/SAC steel project, SAC Background Document SAC/BD-91/04. Sacramento, Calif.: SAC Joint Venture.
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Tsai, C.S. (1994), "Temperature effect of viscoelastic dampers during earthquakes", J. Struct. Eng. - ASCE, 120(2), 394-409. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:2(394)
- Torra, V., Carreras, G., Casciati, S. and Terriault, P. (2014), "On the NiTi wires in dampers for stayed cables", Smart Struct. Syst., 13(3), 353-374. https://doi.org/10.12989/sss.2014.13.3.353
- Torra, V., Isalgue, A., Martorelli, F., Lovey, F.C. and Terriault, P. (2010), "Damping in Civil Engineering Using SMA. Part I: Particular Properties of CuAIBe for Damping of Family Houses", Canadian Metallurgical Quarterly, 49(2), 179-190. https://doi.org/10.1179/cmq.2010.49.2.179
- Zhang, Y., Camilleri, J.A. and Zhu, S. (2008), "Mechanical properties of superelastic Cu-Al-Be wires at cold temperatures for the seismic protection of bridges", Smart Mater. Struct., 17, 025008. https://doi.org/10.1088/0964-1726/17/2/025008
- Zhang, Y., Hu, X. and Zhu, S. (2010), "Seismic performance of benchmark base-isolated bridges with superelastic Cu-Al-Be restraining damping device", Struct. Control Health Monit, 16(6), 668-685. https://doi.org/10.1002/stc.327
- Zhu, S. and Zhang, Y. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng. - ASCE, 134(1), 121-131. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(121)
- Zhu, S. and Zhang, Y. (2013), "Loading rate effect on superelastic SMA-based seismic response modification devices", Earthq. Struct., 4(6), 607-627. https://doi.org/10.12989/eas.2013.4.6.607