DOI QR코드

DOI QR Code

Electrical Transport and Joule Heating of ZrB2 Network in SiC Matrix

  • Kim, Jung-Hun (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Chang-Yeoul (Nano-Convergence Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Sung-Churl (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2018.04.26
  • Accepted : 2018.08.22
  • Published : 2018.09.30

Abstract

To control the electrical properties of a SiC heating element, we sintered $SiC-ZrB_2$composites by using the spark plasma sintering method. The addition of $ZrB_2$ particles with lower electrical conductivity to the SiC matrices with comparatively higher electrical resistivity lowers the electrical resistivities of the composite material. The $ZrB_2$ particles aggregate to form large particles and 3-1, 3-2, and 3-3 networks, i.e., conduction paths. In our study, about $1-{\mu}m$-sized $ZrB_2$ powders start to form the conduction path at about 10 vol.% of addition, namely the threshold volume. The Joule heating experiment shows that 20 vol.% $ZrB_2$-added SiC heating element has outstanding heating efficiency.

Keywords

References

  1. S. N. Karlsdottirw and J. W. Halloran, "Oxidation of $ZrB_2-SiC$: Influence of SiC Content on Solid and Liquid Oxide Phase Formation," J. Am. Ceram. Soc., 92 [2] 481-86 (2009). https://doi.org/10.1111/j.1551-2916.2008.02874.x
  2. M. Mallika, S. Roy, K. K. Ray, and R. Mitra, "Effect of SiC Content, Additives and Process Parameters on Densification and Structure-Property Relations of Pressureless Sintered $ZrB_2-SiC$ Composites," Ceram. Int., 39 [3] 2915-32 (2013). https://doi.org/10.1016/j.ceramint.2012.09.066
  3. S. Kim, J.-M. Chae, S.-M. Lee, Y.-S. Oh, H.-T. Kim, and B.-K. Jang, "Change in Microstructures and Physical Properties of $ZrB_2-SiC$ Ceramics Hot-Pressed with a Variety of SiC Sources," Ceram. Int., 40 [2] 3477-83 (2014). https://doi.org/10.1016/j.ceramint.2013.09.082
  4. C. Hu, Y. Sakka, H. Tanaka, T. Nishimura, S. Guo, and S. Grasso, "Microstructure and Properties of $ZrB_2-SiC$ Composites Prepared by Spark Plasma Sintering Using $TaSi_2$ as Sintering Additive," J. Eur. Ceram. Soc., 30 [12] 2625-31 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.05.013
  5. H. Wang, B. Fan, L. Feng, D. Chen, H. Lu, H. Xu, C.-A. Wang, and R. Zhang, "The Fabrication and Mechanical Properties of $SiC/ZrB_2$ Laminated Ceramic Composite Prepared by Spark Plasma Sintering," Ceram. Int., 38 [6] 5015-22 (2012). https://doi.org/10.1016/j.ceramint.2012.02.098
  6. J. Han, P. Hu, X. Zhang, S. Meng, and W. Han, "Oxidation-Resistant $ZrB_2-SiC$ Composites at $2200^{\circ}C$," Compos. Sci. Technol., 68 [3-4] 799-806 (2008). https://doi.org/10.1016/j.compscitech.2007.08.017
  7. J. W. Zimmermann, G. E. Hilmas, and W. G. Fahrenholtz, "Thermophysical Properties of $ZrB_2$ and $ZrB_2-SiC$ Ceramics," J. Am. Ceram. Soc., 91 [5] 1405-11 (2008). https://doi.org/10.1111/j.1551-2916.2008.02268.x
  8. J.-H. Lee, J.-Y. Ju, C.-H. Kim, J.-H. Park, H.-S. Lee, and Y.-D. Shin, "The Development of an Electroconductive $SiC-ZrB_2$ Composite through Spark Plasma Sintering under Argon Atmosphere," J. Electr. Eng. Technol., 5 [2] 342-51 (2010). https://doi.org/10.5370/JEET.2010.5.2.342
  9. J.-Y. Ju, C.-H. Kim, J.-J. Kim, J.-H. Lee, H.-S. Lee, and Y.-D. Shin, "The Development of an Electroconductive $SiC-ZrB_2$ Ceramic Heater through Spark Plasma Sintering," J. Electr. Eng. Technol., 4 [4] 538-45 (2009). https://doi.org/10.5370/JEET.2009.4.4.538
  10. M. B. Isichenko, "Percolation, Statistical Topography, and Transport in Random Media," Rev. Mod. Phys., 64 [4] 961-1039 (1992). https://doi.org/10.1103/RevModPhys.64.961
  11. D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, "Electrical Resistivity of Composites," J. Am. Ceram. Soc., 73 [8] 2187-203 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
  12. Y.-W. Kim, K.-Y. Lim, and K. J. Kim, "Electrical Resistivity of Silicon Carbide Ceramics Sintered with 1 wt% Aluminum Nitride and Rare Earth Oxide," J. Eur. Ceram. Soc., 32 [16] 4427-34 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.021
  13. Manab Mallik, Ansu J. Kailath, K. K. Raya, and R. Mitra, "Electrical and Thermophysical Properties of $ZrB_2$ and HfB2 Based Composites," J. Eur. Ceram.Soc., 32 [10] 2545-55 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.02.013
  14. S. M. Aharoni, "Electrical Resistivity of a Composite of Conducting Particles in an Insulating Matrix," J. Appl. Phys., 43 [5] 2463-65 (1972). https://doi.org/10.1063/1.1661529