DOI QR코드

DOI QR Code

Effect of a Lightweight Hull Material and an Electric Propulsion System on Weight Reduction: Application to a 45ft CFRP Electric Yacht

CFRP 선체소재와 전기추진체계가 소형선박의 경량화에 미치는 효과

  • Oh, Daekyun (Department of Naval Architecture and Ocean Engineering, Mokpo National Maritime University) ;
  • Jung, Seungho (RIMS (Research Institute of Medium & Small Shipbuilding)) ;
  • Jeong, Sookhyun (Graduate School, Mokpo National Maritime University)
  • 오대균 (목포해양대학교 조선해양공학과) ;
  • 정승호 (중소조선연구원 미래전략기획본부) ;
  • 정숙현 (목포해양대학교 대학원 해양시스템공학과)
  • Received : 2018.09.21
  • Accepted : 2018.10.26
  • Published : 2018.10.31

Abstract

CFRP is often used as lightweight hull material for luxury yachts or special-service ships. An electric propulsion system is also eco-friendly, and has been trialled to equip a small vessel as its main propulsion. In this study, replacing the hull materials and propulsion system with CFRP and electric motors, we made an estimate of the effect of weight reduction and compared it to the original design, for this purpose a case study was conducted on a 45-ft yacht. When redesigning structures with CFRP, we applied the reinforcement content of the carbon fiber in the same way as the original (GC = 0.4), and when changing to the electric propulsion system, we designed motors and battery packs to achieve the same performance as the original. The result showed that CFRP and the electric propulsion system could make the structural and machinery weights 45 % and 58 % lighter, respectively. However, in terms of efficiency, it was confirmed that the electric propulsion system is practically inefficient because it requires a huge amount of battery packs for the same navigation range with diesel engines.

CFRP는 경량화 소재로 각광받고 있으며, 해양산업에서도 고급요트와 특수목적 선박 등에 사용되고 있다. 전기추진체계 또한 친환경 추진 방법으로써, 요트와 소형 여객선 등의 주 추진계로 활용되고 있다. 본 연구에서는 소형선박의 선체소재와 추진계를 각각 CFRP와 전동기로 교체하였을 때의 경량화 효과를 정량적으로 비교분석하였다. 45ft GFRP 선박을 대상으로 사례연구를 수행하였으며, 선체소재를 설계원안과 동일 함침율 기준의 CFRP로 재설계하였고, 추진계는 설계원안의 동일 마력, 항해거리를 유지할 수 있도록 전동기와 배터리 시스템을 설계하였다. 연구결과 CFRP 소재는 선각을 45 % 정도 경량화 할 수 있었고, 전기추진체계는 기관부를 58 % 경량화 할 수 있음을 확인하였다. 다만 전기추진체계의 경우, 디젤 추진체계의 항해거리를 확보하기 위하여 상당한 양의 배터리 팩을 필요로 하기 때문에, 현실적인 수준에서의 경량화 실효성은 없는 것으로 확인되었다.

Keywords

References

  1. Bentley(2018), Maxsurf, https://www.bentley.com/en/products/Product-lineoffshore-structural-analysis-software/maxsurf.
  2. ISO(2002a), International Organization for Standardization, ISO 8666 Small Craft - Principal data, ISO.
  3. ISO(2002b), International Organization for Standardization, ISO 12217 Small craft - Stability and bouyancy assessment and categorization, ISO.
  4. ISO(2008), International Organization for Standardization, ISO 12215 Small craft - Hull construction and scantlings, ISO.
  5. LG Marines(2017), I-330, http://www.lgmarines.com/page/?pid-inboard.
  6. Oh, D. K., D. K. Lee, G. M. Kang, C. H. Ryu and J. K. Noh(2014), Comparative Study on Rules of ISO 12215 and International Classification Society for Structural Design of CFRP Cruise Boat, Journal of Ocean Engineering and Technology, Vol. 28, No. 1, pp. 77-84. https://doi.org/10.5574/KSOE.2014.28.1.077
  7. Oh, D. K., Z. Q. Han and J. K. Noh(2018), Light-Weight Structure Design for a 11m CFRP (Carbon Fiber-Reinforced Plastics) High Speed Craft with Optimum Fiber Mass Content.
  8. RINA(2009), Registro Italiano Navale, Rules for the Classification of Pleasure Yacht Part B Hull and Stability.
  9. Savitsky, D.(2012), The Effect of Bottom Warp on the Performance of Planing Hulls. Proceedings of 3rd Cheasapeake Powerboat Symposium, pp. 1-40.
  10. Volvo Penta(2017), D6-330, http://www.volvopenta.com/marine leisure/en-en/products/motor-boats/ranges/inboard-shaft/d6-330/specification.html.
  11. Wally(2017), Carbon PowerBoat Wally 58 Power, https://www.wally.com/wally-power/58-wally-power.html.

Cited by

  1. Environmental Impact Evaluation on Lightweight Structure Design of a Composite Ship by LCA (Life Cycle Assessment) vol.36, pp.9, 2018, https://doi.org/10.7736/kspe.2019.36.9.875
  2. GFRP 낚시어선의 선체구조 적층판 분석과 경량화 설계 vol.33, pp.6, 2019, https://doi.org/10.26748/ksoe.2019.105
  3. FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계 vol.57, pp.2, 2020, https://doi.org/10.3744/snak.2020.57.2.104
  4. Test and Evaluation Procedure of Foam Core Materials for Composite Ships vol.26, pp.3, 2020, https://doi.org/10.7837/kosomes.2020.26.3.286
  5. Basic Design of High-Speed Riverine Craft Made of Carbon Fiber Reinforced Polymer vol.57, pp.4, 2020, https://doi.org/10.3744/snak.2020.57.4.241
  6. LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구 vol.34, pp.1, 2021, https://doi.org/10.7234/composres.2021.34.1.008
  7. FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구 vol.58, pp.5, 2018, https://doi.org/10.3744/snak.2021.58.5.294