참고문헌
- Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43:13-24.
- Ward JPT. Physiological redox signalling and regulation of ion channels: implications for pulmonary hypertension. Exp Physiol 2017;102:1078-82. https://doi.org/10.1113/EP086040
- Bonnet S, Archer SL. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacol Ther 2007;115:56-69. https://doi.org/10.1016/j.pharmthera.2007.03.014
- Burg ED, Remillard CV, Yuan JX. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis:pharmacotherapeutic implications. Br J Pharmacol 2008;153:S99-111.
- Whitman EM, Pisarcik S, Luke T, Fallon M, Wang J, Sylvester JT, et al. Endothelin-1 mediates hypoxia-induced inhibition of voltagegated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2008;294:309-18. https://doi.org/10.1152/ajplung.00091.2007
- Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, et al. Molecular identification of the role of voltagegated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 1998;101:2319-30. https://doi.org/10.1172/JCI333
- Yuan XJ. Voltage-gated K+ currents regulate resting membrane potential and [Ca2+] in pulmonary arterial myocytes. Circ Res 1995;77:370-8. https://doi.org/10.1161/01.RES.77.2.370
- Wedgwood S, Dettman RW, Black SM. ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 2001;281:1058-67. https://doi.org/10.1152/ajplung.2001.281.5.L1058
- Miyauchi T, Yorikane R, Sakai S, Sakurai T, Okada M, Nishikibe M, et al. Contribution of endogenous endothelin-1 to the progression of cardiopulmonary alterations in rats with monocrotaline-induced pulmonary hypertension. Circ Res 1993;73:887-97. https://doi.org/10.1161/01.RES.73.5.887
- Cogolludo A, Frazziano G, Cobeno L, Moreno L, Lodi F, Villamor E, et al. Role of reactive oxygen species in Kv channel inhibition and vasoconstriction induced by TP receptor activation in rat pulmonary arteries. Ann N Y Acad Sci 2006;1091:41-51. https://doi.org/10.1196/annals.1378.053
- Fulton DJR, Li X, Bordan Z, Haigh S, Bentley A, Chen F, et al. Reactive oxygen and nitrogen species in the development of pulmonary hypertension. Antioxidants (Basel) 2017;6:54-76. https://doi.org/10.3390/antiox6030054
- Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:799-822. https://doi.org/10.1152/ajpcell.1995.268.4.C799
- Shibukawa Y, Chilton EL, Maccannell KA, Clark RB, Giles WR. K+ currents activated by depolarization in cardiac fibroblasts. Biophys J 2005;88:3924-35. https://doi.org/10.1529/biophysj.104.054429
- Wedgwood S, McMullan DM, Bekker JM, Fineman JR, Black SM. Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy. Circ Res 2001;89:357-64. https://doi.org/10.1161/hh1601.094983
- Lee H, Kim KC, Cho MS, Suh SH, Hong YM. Modafinil improves monocrotaline-induced pulmonary hypertension rat model. Pediatr Res 2016;80:119-27. https://doi.org/10.1038/pr.2016.38
- Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1 alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 2008;294:570-8. https://doi.org/10.1152/ajpheart.01324.2007
- Shimoda LA, Sylvester JT, Booth GM, Shimoda TH, Meeker S, Meeker S, et al. Inhibition of voltage-gated K(+) currents by endothelin-1 in human pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2001;281:1115-22. https://doi.org/10.1152/ajplung.2001.281.5.L1115
- Wong CM, Bansal G, Pavlickova L, Marcocci L, Suzuki YJ. Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxid Redox Signal 2013;18:1789-96. https://doi.org/10.1089/ars.2012.4568
- Konduri GG, Bakhutashvili I, Eis A, Pritchard K Jr. Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Heart Circ Physiol 2007;292:1812-20. https://doi.org/10.1152/ajpheart.00425.2006
- Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, et al. Increases in mitochondrial reactive oxygen species trigger hypoxiainduced calcium responses in pulmonary artery smooth muscle cells. Circ Res 2006;99:970-8. https://doi.org/10.1161/01.RES.0000247068.75808.3f
- Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 1995;9:183-9 https://doi.org/10.1096/fasebj.9.2.7781921
- Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn R. Increased p22phox/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. antioxidants & redox signaling. 2013;18:1765-76. https://doi.org/10.1089/ars.2012.4766
- Archer SL, Marsboom G, Kim GH, Zhang HJ, Toth PT, Svensson EC, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 2010;121:2661-71. https://doi.org/10.1161/CIRCULATIONAHA.109.916098
- Tonelli AR, Alnuaimat H, Mubarak K. Pulmonary vasodilator testing and use of calcium channel blockers in pulmonary arterial hypertension. Respir Med 2010;104:481-96. https://doi.org/10.1016/j.rmed.2009.11.015
- Moral-Sanz J, Mahmoud AD, Ross FA, Eldstrom J, Fedida D, Hardie DG, et al. AMP-activated protein kinase inhibit Kv1.5 channel currents of pulmonary arterial myocytes in response to hypoxia and inhibition of mitochondrial oxidative phosphorylation. J Physiol 2016;594:4901-15. https://doi.org/10.1113/JP272032
- Fu LC, Lv Y, Zhong Y, He Q, Liu X, Du LZ. Tyrosine phosphorylation of Kv1.5 is upregulated in intrauterine growth retardation rats with exaggerated pulmonary hypertension. Braz J Med Biol Res 2017;50:6237-43.
- Lv Y, Tang LL, Wei JK, Xu XF, Gu W, Fu LC, et al. Decreased Kv1.5 expression in intrauterine growth retardation rats with exaggerated pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2013;305:856-65. https://doi.org/10.1152/ajplung.00179.2013
- Yuan JX, Aldinger AM, Juhasazova M, Wang J, Conte JV Jr, Gaine SP, et al. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 1998;98:1400-6. https://doi.org/10.1161/01.CIR.98.14.1400
- Firth AL, Remillard CV, Platoshyn O, Fantozzi I, Ko EA, Yuan JX. Functional ion channels in human pulmonary artery smooth muscle cells: Voltage-dependent cation channels. Pulm Circ 2011;1:48-71. https://doi.org/10.4103/2045-8932.78103
- Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 1998;351:726-7. https://doi.org/10.1016/S0140-6736(05)78495-6
- Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte JV Jr, Gaine SP, et al. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 1998;98:1400-6. https://doi.org/10.1161/01.CIR.98.14.1400
- Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010;90:291-366. https://doi.org/10.1152/physrev.00021.2009
- Ko EA, Han J, Jung ID, Park WS. Physiological roles of potassium channels in vascular smooth muscle cells. J Smooth Muscle Res 2008; 44:65-81. https://doi.org/10.1540/jsmr.44.65
피인용 문헌
- Effect of Ambrisentan Therapy on the Expression of Endothelin Receptor, Endothelial Nitric Oxide Synthase and NADPH Oxidase 4 in Monocrotaline-induced Pulmonary Arterial Hypertension Rat Model vol.49, pp.9, 2018, https://doi.org/10.4070/kcj.2019.0006
- Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective vol.33, pp.5, 2018, https://doi.org/10.1111/fcp.12461
- Transcriptomic profile of cationic channels in human pulmonary arterial hypertension vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-95196-z