DOI QR코드

DOI QR Code

Control of Cyanobacteria (Microcystis aeruginosa) Blooms by Filter-feeder Bivalves (Unio douglasiae, Anodonata woodiana) : an In Situ Mesocosm Experiment using Stable Isotope Tracers

안정동위원소 추적자 실험을 통한 이매패류의 남조류 (Microcystis aeruginosa) 저감효과 평가

  • Seo, Yeon-Ji (Global Ocean Research Center, Korea Institute of Ocean Science and Technology) ;
  • Kim, Min-Seob (Environmental Research Complex)
  • 서연지 (한국해양과학기술원 대양자원연구센터) ;
  • 김민섭 (국립환경과학원 환경측정분석센터)
  • Received : 2018.09.19
  • Accepted : 2018.09.30
  • Published : 2018.09.30

Abstract

Stable isotope tracers were first applied to evaluate the Microcystis cell assimilation efficiency of bivalves, since the past identification method has been limited to tracking the changes of each chl-a, clearity, and nutrient. The filter-feeders (Sinanodonta woodiana and Unio douglasiae) were assessed under the condition of cyanobacteria (Microcystis aeruginosa) blooms through an in mesocosm experiment using $^{13}C$ and $^{15}N$ dual isotope tracers. chl-a concentration in the treatment mesocosm was dramatically decreased after the beginning of the second day, ranging from 116 to $66{\mu}g\;L^{-1}$. In addition, the incorporated $^{13}C$ and $^{15}N$ atom % in the S. woodiana bivalve showed higher values than U. douglasiae bivalves. The results demonstrate that U. douglasiae has less capacity to assimilate toxic cyanobacteria derived from diet. Our results therefore also indicate that S. woodiana can eliminate the toxin more rapidly than U. douglasiae, having a larger detoxification capacity.

생물조절기법 (Biomanipulation)을 이용한 수질개선 방법으로서, 이매패류인 S. woodiana 종이 여과섭식을 통해 남조류(M. aeruginosa)를 효율적으로 제어할 수 있다는 것을 안정동위원소($^{13}C$, $^{15}N$) 추적자 실험을 통하여 밝혀내었다. 이매패류를 이용하여 호소수의 남조류 번성을 억제함으로서 호소 건강성을 회복시키는 것도 중요하지만, 외래종보다는 국내 자생종을 활용하는 것이 생태계 변화를 최소화 할 수 있다는 것을 고려해야 할 것이다.

Keywords

References

  1. An, K.G., J.Y. Lee, K.K. Hema, S.J. Lee, S.J. Hwang, B.H. Kim, S.K. Park and H.Y. Um. 2010. Control of algal scum using top-down biomanipulation approach and ecosystem health assessments for efficient reservoir management. Water Air Soil Pollutant 205: 3-24.
  2. Beklioglu, M. 1999. A review on the control of eutrophication in deep and shallow lakes. Turkish Journal of Zoology 23: 327-336.
  3. Benndorf, J. 1990. Conditions for effective biomanipulation: conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201: 187-203. https://doi.org/10.1007/BF02530339
  4. Bontes, B.M., A.M. Verschoo, L.M. Dionisio Pires, E. Van Donk and B.W. Ibelings. 2007. Functional response of Anodonta anatine feeding on a green algal and four strains of cyanobacteria, differing in shape, size and toxicity. Hydrobiologia 584: 191-204. https://doi.org/10.1007/s10750-007-0580-2
  5. Cooke, G.D., E.G. Welch, S.P. Peterson and P.R. Newroth. 1993. Restoration and management of lakes and reservoirs (2nded.). 548pp. Lewis. Boca Raton.
  6. Dittmann, E. and C. Wiegand. 2006. Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs. Molecular Nutrition & Food Research 50:7-17. https://doi.org/10.1002/mnfr.200500162
  7. Engstrom, J., M. Viherluoto and M. Viitasalo. 2001 Effects of toxic and non-toxic cyanobacteria on grazing, zooplanktivory and survival of the mysid shrimp Mysis mixta. Journal of Experimental Marine Biology and Ecology 257: 269-280. https://doi.org/10.1016/S0022-0981(00)00339-7
  8. Gosling, E. 2003. Bivalve molluscs: biology, ecology and culture. Oxford; Fishing News Books.
  9. Hwang, S.J., H.S. Kim and J.K. Shin. 2001. Filter feeding effects of a freshwater bivalve on phytoplankton. Korean Journal of Ecology and Environments. 34: 298-309.
  10. Hwang, S.J., H.S. Kim, J.K. Shin, J.M. Oh. 2004. Grazing effects of a freshwater bivalve (Corbiclualeana Prime) and large zooplankton on phytoplanton communities in two Korean lakes. Hydrobiologia 515: 161-179. https://doi.org/10.1023/B:HYDR.0000027327.06471.1e
  11. Jeppesen, E., J.P. Jensen, M. Sondergaard, T.L. Lauridsen, L.J. Pedersen and L. Jensen. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342/343: 151-164. https://doi.org/10.1023/A:1017046130329
  12. Jeffries, M. and D. Mills. 1990. Freshwater Ecology : Principals and Applications. Belhaven Press: London; 283.
  13. Kim, M.S., W.S. Lee, K.S. Kumar, K.H. Shin, W. Robarge, M.S. Kim and S.R. Lee. 2016. Effects of HCl pretreatment, drying and storage on the stable isotope ratios of soil and sediment samples. Rapid Communication Mass Spectrometry 30: 1567-1575. https://doi.org/10.1002/rcm.7600
  14. Kononen, K., J. Kuparinen, K. Makela, J. Laanemets, J. Pavelson and S. Nommann. 1996 Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf on Finland, Baltic Sea. Limnology and Oceanography 41:98-112. https://doi.org/10.4319/lo.1996.41.1.0098
  15. Koski, M., M. Rosenberg and M. Viitasalo. 1999. Reporduction and survivial of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Marine Ecology Progress Series 186: 187-197. https://doi.org/10.3354/meps186187
  16. Lee, Y.J., B.H. Kim, N.Y. Kim, H.Y. Um and S.J. Hwang. 2008. Effect of temperature, food concentration of Unio douglasiae on Microcystis aeruginosa. Korean Journal of Ecology and Environments 41(S): 61-67.
  17. Magalhaes, V.F., R.M. Soares and S.M.F.O. Azevedo. 2001. Microcystin contamination in fish from the Hacarepagua Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39: 1077-1085. https://doi.org/10.1016/S0041-0101(00)00251-8
  18. Naddafi, R., K. Pettersson and P. Eklov. 2007. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshwater Biology 52: 823-842. https://doi.org/10.1111/j.1365-2427.2007.01732.x
  19. Nalepa, T.F. and D.W. Schloesser. 1993. Zebra mussels: Biology, impacts and control. Lewis, Boca Raton, Florida.
  20. Neumann, D. and H.A. Jenner. 1992. The zebra mussel-Ecology, Biological Monitoring and First Applications in the Water Quality Management. Gustav Fischer, New York.
  21. Park, K.S., B.H. Kim, H.Y. Um and S.J. Hwang. 2008. Effects of dissolved oxygen and depth on the survival and filtering rate and pseudofeces production of a filter-feeding bivalve (Unio douglasiae) in the cyanobacteria bloom. Korean Journal of Ecology and Environments 41(S): 50-60.
  22. Peterson, B.J. and B. Fry. 1987 Stable isotopes in ecosystem studies, Annual Review of Ecology, Evolution, and Systematics 18: 293-320. https://doi.org/10.1146/annurev.es.18.110187.001453
  23. Piola, R.F., I.M. Suthers and D. Rissik. 2008. Carbon and nitrogen stable isotope analysis indicates freshwater shrimp Paratya australiensis Kemp, 1917 (Atyidae) assimilate cyanobacterial accumulations. Hydrobiologia 608: 121-132. https://doi.org/10.1007/s10750-008-9374-4
  24. Sarnelle, O. 1993. Herbivore effects on phytoplankton succession in a eutrophic lake. Ecological Monographs 63: 129-149. https://doi.org/10.2307/2937177
  25. Shapiro, J. and D.I. Wright. 1984. Lake restoration by biomanipulation. Freshwater Biology 14: 371-383. https://doi.org/10.1111/j.1365-2427.1984.tb00161.x
  26. Strand, J.A. and S.E.B. Weisner. 2001. Dynamics of submerged macrophyte populations in response to biomanipulation. Freshwater Biology 46: 1397-1408. https://doi.org/10.1046/j.1365-2427.2001.00746.x
  27. Strickland, J.D.H. and T.R. Parsons. 1972. A Pratical Handbook of Seawater Analysis. Journal of the Fisheries Research Board of Canada. (Bull.). pp. 167-311.
  28. Tester, P.A., J.T. Turner and D. She. 2000. Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish. Journal of Plankton Research 22: 47-61. https://doi.org/10.1093/plankt/22.1.47
  29. Vanderploeg, H.A., J.R. Liebig, W.W Carmichael, M.A. Agy, T.H. Johengen, G.L. Fahnenstiel and T.F. Nalepa. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic microcystis blooms in saginaw bay (lake huron) and lake erie. Canadian Journal of Fisheries and Aquat Scinece 58: 208-1221.
  30. Vaughn, C.C., K.B. Gido and D.E. Spooner. 2004. Ecosystem processes performed by unionid mussels in stream mesocosms: Species roles and effects of abundance. Hydrobiologia 527: 35-47. https://doi.org/10.1023/B:HYDR.0000043180.30420.00
  31. Watanabe, M.F., H.D. Park, F. Kondo, K. Harada, H. Hayashi and T. Okino. 1997. Identification and estimation of microcystins in freshwater mussels. Natural Toxins 5: 31-35.
  32. Yokoyama, A. and H.D. Park. 2002. Mechanism and prediction for contamination of freshwater bivalves (Unionidae) with the cyanobacterial toxin microcystin in hypereutrophic Lake Suwa, Japan. Environmental Toxicology 17:424-433. https://doi.org/10.1002/tox.10075