DOI QR코드

DOI QR Code

Diabetes and Alzheimer's Disease: Mechanisms and Nutritional Aspects

  • Lee, Hee Jae (Department of Food and Nutrition, Seoul Women's University) ;
  • Seo, Hye In (Department of Food and Nutrition, Seoul Women's University) ;
  • Cha, Hee Yun (Department of Food and Nutrition, Seoul Women's University) ;
  • Yang, Yun Jung (Department of Food and Nutrition, Seoul Women's University) ;
  • Kwon, Soo Hyun (Department of Food and Nutrition, Seoul Women's University) ;
  • Yang, Soo Jin (Department of Food and Nutrition, Seoul Women's University)
  • Received : 2018.09.24
  • Accepted : 2018.10.14
  • Published : 2018.10.31

Abstract

Blood glucose homeostasis is well maintained by coordinated control of various hormones including insulin and glucagon as well as cytokines under normal conditions. However, chronic exposure to diabetic environment with high fat/high sugar diets and physical/mental stress can cause hyperglycemia, one of main characteristics of insulin resistance, metabolic syndrome, and diabetes. Hyperglycemia impairs organogenesis and induces organ abnormalities such as cardiac defect in utero. It is a risk factor for the development of metabolic diseases in adults. Resulting glucotoxicity affects peripheral tissues and vessels, causing pathological complications including diabetic neuropathy, nephropathy, vessel damage, and cardiovascular diseases. Moreover, chronic exposure to hyperglycemia can deteriorate cognitive function and other aspects of mental health. Recent reports have demonstrated that hyperglycemia is closely related to the development of cognitive impairment and dementia, suggesting that there may be a cause-effect relationship between hyperglycemia and dementia. With increasing interests in aging-related diseases and mental health, diabetes-related cognitive impairment is attracting great attention. It has been speculated that glucotoxicity can result in structural damage and functional impairment of brain cells and nerves, hemorrhage of cerebral blood vessel, and increased accumulation of amyloid beta. These are potential mechanisms underlying diabetes-related dementia. Nutrients and natural food components have been investigated as preventive and/or intervention strategy. Among candidate components, resveratrol, curcumin, and their analogues might be beneficial for the prevention of diabetes-related cognitive impairment. The purposes of this review are to discuss recent experimental evidence regarding diabetes and cognitive impairment and to suggest potential nutritional intervention strategies for the prevention and/or treatment of diabetes-related dementia.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Seoul Women's University

References

  1. Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci 2017;18:1321. https://doi.org/10.3390/ijms18061321
  2. Feve B, Bastard JP. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 2009;5:305-11. https://doi.org/10.1038/nrendo.2009.62
  3. Akash MS, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem 2018;119:105-10. https://doi.org/10.1002/jcb.26174
  4. Hemmingsen B, Gimenez-Perez G, Mauricio D, Roque I Figuls M, Metzendorf MI, Richter B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev 2017:CD003054.
  5. Lawson TB, Scott-Drechsel DE, Chivukula VK, Rugonyi S, Thornburg KL, Hinds MT. Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart. J Cardiovasc Dev Dis 2018;5:E13. https://doi.org/10.3390/jcdd5010013
  6. Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 2016;65:1049-61. https://doi.org/10.1016/j.metabol.2016.02.014
  7. Lee EM, Lee YE, Lee E, Ryu GR, Ko SH, Moon SD, Song KH, Ahn YB. Protective effect of heme oxygenase-1 on high glucose-induced pancreatic $\beta$-cell injury. Diabetes Metab J 2011;35:469-79. https://doi.org/10.4093/dmj.2011.35.5.469
  8. Overman MJ, Pendleton N, O'Neill TW, Bartfai G, Casanueva FF, Forti G, Rastrelli G, Giwercman A, Han TS, Huhtaniemi IT, Kula K, Lean ME, Punab M, Lee DM, Correa ES, Ahern T, Laurent MR, Verschueren SM, Antonio L, Gielen E, Rutter MK, Vanderschueren D, Wu FC, Tournoy J; EMAS study group. Glycemia but not the metabolic syndrome is associated with cognitive decline: findings from the European Male Ageing Study. Am J Geriatr Psychiatry 2017;25:662-71. https://doi.org/10.1016/j.jagp.2017.02.004
  9. Dolan C, Glynn R, Griffin S, Conroy C, Loftus C, Wiehe PC, Healy ML, Lawlor B. Brain complications of diabetes mellitus: a cross-sectional study of awareness among individuals with diabetes and the general population in Ireland. Diabet Med 2018;35:871-9. https://doi.org/10.1111/dme.13639
  10. Wang CY, Neil DL, Home P. 2020 vision - an overview of prospects for diabetes management and prevention in the next decade. Diabetes Res Clin Pract 2018;143:101-12. https://doi.org/10.1016/j.diabres.2018.06.007
  11. Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclinical and clinical Alzheimer's disease in the United States. Alzheimers Dement 2018;14:121-9. https://doi.org/10.1016/j.jalz.2017.10.009
  12. Weuve J, Hebert LE, Scherr PA, Evans DA. Prevalence of Alzheimer disease in US states. Epidemiology 2015;26:e4-6. https://doi.org/10.1097/EDE.0000000000000199
  13. Rojas-Carranza CA, Bustos-Cruz RH, Pino-Pinzon CJ, Ariza-Marquez YV, Gomez-Bello RM, Canadas-Garre M. Diabetes-related neurological implications and pharmacogenomics. Curr Pharm Des 2018;24:1695-710. https://doi.org/10.2174/1381612823666170317165350
  14. Pruzin JJ, Nelson PT, Abner EL, Arvanitakis Z. Review: relationship of type 2 diabetes to human brain pathology. Neuropathol Appl Neurobiol 2018;44:347-62. https://doi.org/10.1111/nan.12476
  15. Gaspar JM, Baptista FI, Macedo MP, Ambrosio AF. Inside the diabetic brain: role of different players involved in cognitive decline. ACS Chem Neurosci 2016;7:131-42. https://doi.org/10.1021/acschemneuro.5b00240
  16. Gonzalez-Reyes RE, Aliev G, Avila-Rodrigues M, Barreto GE. Alterations in glucose metabolism on cognition: a possible link between diabetes and dementia. Curr Pharm Des 2016;22:812-8. https://doi.org/10.2174/1381612822666151209152013
  17. Macauley SL, Stanley M, Caesar EE, Yamada SA, Raichle ME, Perez R, Mahan TE, Sutphen CL, Holtzman DM. Hyperglycemia modulates extracellular amyloid-$\beta$ concentrations and neuronal activity in vivo. J Clin Invest 2015;125:2463-7. https://doi.org/10.1172/JCI79742
  18. Kim DJ, Yu JH, Shin MS, Shin YW, Kim MS. Hyperglycemia reduces efficiency of brain networks in subjects with type 2 diabetes. PLoS One 2016;11:e0157268. https://doi.org/10.1371/journal.pone.0157268
  19. Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, Kolpakov MA, Bashkirova YV, Sabri AK, Persidsky Y. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. Forthcoming 2018.
  20. Silzer TK, Phillips NR. Etiology of type 2 diabetes and Alzheimer's disease: exploring the mitochondria. Mitochondrion. Forthcoming 2018.
  21. Reddy BR, Maitra S, Jhelum P, Kumar KP, Bagul PK, Kaur G, Banerjee SK, Kumar A, Chakravarty S. Sirtuin 1 and 7 mediate resveratrol-induced recovery from hyper-anxiety in high-fructose-fed prediabetic rats. J Biosci 2016;41:407-17. https://doi.org/10.1007/s12038-016-9627-8
  22. Qin B, Xun P, Jacobs DR Jr, Zhu N, Daviglus ML, Reis JP, Steffen LM, Van Horn L, Sidney S, He K. Intake of niacin, folate, vitamin B-6, and vitamin B-12 through young adulthood and cognitive function in midlife: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Am J Clin Nutr 2017;106:1032-40. https://doi.org/10.3945/ajcn.117.157834
  23. Kim EJ, Yang SJ. Nicotinamide reduces amyloid precursor protein and presenilin 1 in brain tissues of amyloid beta-tail vein injected mice. Clin Nutr Res 2017;6:130-5. https://doi.org/10.7762/cnr.2017.6.2.130
  24. Sawda C, Moussa C, Turner RS. Resveratrol for Alzheimer's disease. Ann N Y Acad Sci 2017;1403:142-9. https://doi.org/10.1111/nyas.13431
  25. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016;387:1513-30. https://doi.org/10.1016/S0140-6736(16)00618-8
  26. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. World Alzheimer report 2015. The global impact of dementia: an analysis of prevalence, incidence, cost and trends. London: Alzheimer's Disease International. Available from https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf [cited 2018 Sep 23]. 2015.
  27. Wu YT, Beiser AS, Breteler MM, Fratiglioni L, Helmer C, Hendrie HC, Honda H, Ikram MA, Langa KM, Lobo A, Matthews FE, Ohara T, Peres K, Qiu C, Seshadri S, Sjolund BM, Skoog I, Brayne C. The changing prevalence and incidence of dementia over time - current evidence. Nat Rev Neurol 2017;13:327-39.
  28. Irie F, Fitzpatrick AL, Lopez OL, Kuller LH, Peila R, Newman AB, Launer LJ. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE ${\varepsilon}4$: the Cardiovascular Health Study Cognition Study. Arch Neurol 2008;65:89-93.
  29. Vagelatos NT, Eslick GD. Type 2 diabetes as a risk factor for Alzheimer's disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev 2013;35:152-60. https://doi.org/10.1093/epirev/mxs012
  30. Ronnemaa E, Zethelius B, Sundelof J, Sundstrom J, Degerman-Gunnarsson M, Berne C, Lannfelt L, Kilander L. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology 2008;71:1065-71. https://doi.org/10.1212/01.wnl.0000310646.32212.3a
  31. Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, Sulkava R, Kivipelto M. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology 2010;75:1195-202. https://doi.org/10.1212/WNL.0b013e3181f4d7f8
  32. Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA. GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res 1998;797:1-11. https://doi.org/10.1016/S0006-8993(98)00103-6
  33. Diggs-Andrews KA, Zhang X, Song Z, Daphna-Iken D, Routh VH, Fisher SJ. Brain insulin action regulates hypothalamic glucose sensing and the counterregulatory response to hypoglycemia. Diabetes 2010;59:2271-80. https://doi.org/10.2337/db10-0401
  34. Reno CM, Puente EC, Sheng Z, Daphna-Iken D, Bree AJ, Routh VH, Kahn BB, Fisher SJ. Brain GLUT4 knockout mice have impaired glucose tolerance, decreased insulin sensitivity, and impaired hypoglycemic counterregulation. Diabetes 2017;66:587-97. https://doi.org/10.2337/db16-0917
  35. Al Haj Ahmad RM, Al-Domi HA. Thinking about brain insulin resistance. Diabetes Metab Syndr 2018;12:1091-4. https://doi.org/10.1016/j.dsx.2018.05.003
  36. Woods SC, Seeley RJ, Baskin DG, Schwartz MW. Insulin and the blood-brain barrier. Curr Pharm Des 2003;9:795-800. https://doi.org/10.2174/1381612033455323
  37. Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in brain regulates systemic metabolism and brain function. Diabetes 2014;63:2232-43. https://doi.org/10.2337/db14-0568
  38. Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM, Mendelsohn FA. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 1987;121:1562-70. https://doi.org/10.1210/endo-121-4-1562
  39. Park CR, Seeley RJ, Craft S, Woods SC. Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiol Behav 2000;68:509-14. https://doi.org/10.1016/S0031-9384(99)00220-6
  40. Haj-ali V, Mohaddes G, Babri SH. Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav Neurosci 2009;123:1309-14. https://doi.org/10.1037/a0017722
  41. Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y, Luby J, Dagogo-Jack A, Alderson A. Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol Aging 1996;17:123-30. https://doi.org/10.1016/0197-4580(95)02002-0
  42. Neth BJ, Craft S. Insulin resistance and Alzheimer's disease: bioenergetic linkages. Front Aging Neurosci 2017;9:345. https://doi.org/10.3389/fnagi.2017.00345
  43. Yoo DY, Yim HS, Jung HY, Nam SM, Kim JW, Choi JH, Seong JK, Yoon YS, Kim DW, Hwang IK. Chronic type 2 diabetes reduces the integrity of the blood-brain barrier by reducing tight junction proteins in the hippocampus. J Vet Med Sci 2016;78:957-62. https://doi.org/10.1292/jvms.15-0589
  44. Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease. Folia Neuropathol 2009;47:289-99.
  45. Yang Y, Wu Y, Zhang S, Song W. High glucose promotes A$\beta$ production by inhibiting APP degradation. PLoS One 2013;8:e69824. https://doi.org/10.1371/journal.pone.0069824
  46. Cao D, Lu H, Lewis TL, Li L. Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 2007;282:36275-82. https://doi.org/10.1074/jbc.M703561200
  47. Currais A, Prior M, Lo D, Jolivalt C, Schubert D, Maher P. Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice. Aging Cell 2012;11:1017-26. https://doi.org/10.1111/acel.12002
  48. Devi L, Alldred MJ, Ginsberg SD, Ohno M. Mechanisms underlying insulin deficiency-induced acceleration of $\beta$-amyloidosis in a mouse model of Alzheimer's disease. PLoS One 2012;7:e32792. https://doi.org/10.1371/journal.pone.0032792
  49. Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J 2004;18:902-4. https://doi.org/10.1096/fj.03-0978fje
  50. Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E. Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp Neurol 2010;223:422-31. https://doi.org/10.1016/j.expneurol.2009.11.005
  51. Liu Y, Liu H, Yang J, Liu X, Lu S, Wen T, Xie L, Wang G. Increased amyloid beta-peptide (1-40) level in brain of streptozotocin-induced diabetic rats. Neuroscience 2008;153:796-802. https://doi.org/10.1016/j.neuroscience.2008.03.019
  52. Mehla J, Chauhan BC, Chauhan NB. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. J Alzheimers Dis 2014;39:145-62. https://doi.org/10.3233/JAD-131238
  53. Vandal M, White PJ, Tremblay C, St-Amour I, Chevrier G, Emond V, Lefrancois D, Virgili J, Planel E, Giguere Y, Marette A, Calon F. Insulin reverses the high-fat diet-induced increase in brain A$\beta$ and improves memory in an animal model of Alzheimer disease. Diabetes 2014;63:4291-301. https://doi.org/10.2337/db14-0375
  54. Wang JQ, Yin J, Song YF, Zhang L, Ren YX, Wang DG, Gao LP, Jing YH. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats. J Diabetes Res 2014;2014:796840.
  55. Kursvietiene L, Staneviciene I, Mongirdiene A, Bernatoniene J. Multiplicity of effects and health benefits of resveratrol. Medicina (Kaunas) 2016;52:148-55. https://doi.org/10.1016/j.medici.2016.03.003
  56. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J Biol Chem 2005;280:37377-82. https://doi.org/10.1074/jbc.M508246200
  57. Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT. Resveratrol decreases the insoluble A$\beta$1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 2015;310:641-9. https://doi.org/10.1016/j.neuroscience.2015.10.006
  58. Hong JH, Lee H, Lee SR. Protective effect of resveratrol against neuronal damage following transient global cerebral ischemia in mice. J Nutr Biochem 2016;27:146-52. https://doi.org/10.1016/j.jnutbio.2015.08.029
  59. Tian X, Liu Y, Ren G, Yin L, Liang X, Geng T, Dang H, An R. Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res 2016;1650:1-9. https://doi.org/10.1016/j.brainres.2016.08.032
  60. Tian Z, Wang J, Xu M, Wang Y, Zhang M, Zhou Y. Resveratrol improves cognitive impairment by regulating apoptosis and synaptic plasticity in streptozotocin-induced diabetic rats. Cell Physiol Biochem 2016;40:1670-7. https://doi.org/10.1159/000453216
  61. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Correa M, da Rosa MM, Rubin MA, Chitolina Schetinger MR, Morsch VM. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 2009;610:42-8. https://doi.org/10.1016/j.ejphar.2009.03.032
  62. Du LL, Xie JZ, Cheng XS, Li XH, Kong FL, Jiang X, Ma ZW, Wang JZ, Chen C, Zhou XW. Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. Age (Dordr) 2014;36:613-23. https://doi.org/10.1007/s11357-013-9592-1
  63. Wong RH, Raederstorff D, Howe PR. Acute resveratrol consumption improves neurovascular coupling capacity in adults with type 2 diabetes mellitus. Nutrients 2016;8:E425. https://doi.org/10.3390/nu8070425
  64. Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Zachariah B. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: potential role of serine kinases. Chem Biol Interact 2016;244:187-94. https://doi.org/10.1016/j.cbi.2015.12.012
  65. Naijil G, Anju TR, Jayanarayanan S, Paulose CS. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats. Nutr Res 2015;35:823-33. https://doi.org/10.1016/j.nutres.2015.06.011
  66. Thapa A, Jett SD, Chi EY. Curcumin attenuates amyloid-$\beta$ aggregate toxicity and modulates amyloid-$\beta$ aggregation pathway. ACS Chem Neurosci 2016;7:56-68. https://doi.org/10.1021/acschemneuro.5b00214
  67. Huang HC, Zheng BW, Guo Y, Zhao J, Zhao JY, Ma XW, Jiang ZF. Antioxidative and neuroprotective effects of curcumin in an Alzheimer's disease rat model co-treated with intracerebroventricular streptozotocin and subcutaneous D-galactose. J Alzheimers Dis 2016;52:899-911. https://doi.org/10.3233/JAD-150872
  68. de Matos AM, de Macedo MP, Rauter AP. Bridging type 2 diabetes and Alzheimer's disease: assembling the puzzle pieces in the quest for the molecules with therapeutic and preventive potential. Med Res Rev 2018;38:261-324. https://doi.org/10.1002/med.21440
  69. Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, Manna PP, Giampieri F, Battino M. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer's disease: a focus on human studies. Pharmacol Res 2018;131:32-43. https://doi.org/10.1016/j.phrs.2018.03.012
  70. Marcason W. What are the components to the MIND diet? J Acad Nutr Diet 2015;115:1744. https://doi.org/10.1016/j.jand.2015.08.002
  71. Bae CS, Song J. The role of glucagon-like peptide 1 (GLP1) in type 3 diabetes: GLP-1 controls insulin resistance, neuroinflammation and neurogenesis in the brain. Int J Mol Sci 2017;18:E2493. https://doi.org/10.3390/ijms18112493
  72. de la Monte SM, Tong M, Wands JR. The 20-year voyage aboard the journal of Alzheimer's disease: docking at 'Type 3 Diabetes', environmental/exposure factors, pathogenic mechanisms, and potential treatments. J Alzheimers Dis 2018;62:1381-90. https://doi.org/10.3233/JAD-170829

Cited by

  1. In Addition to Poor Glycemic Control, a High Level of Irisin in the Plasma Portends Early Cognitive Deficits Clinically in Chinese Patients With Type 2 Diabetes Mellitus vol.10, pp.None, 2018, https://doi.org/10.3389/fendo.2019.00634
  2. The Effects of Resveratrol in the Treatment of Metabolic Syndrome vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030535
  3. Metabolic Endotoxemia: A Potential Underlying Mechanism of the Relationship between Dietary Fat Intake and Risk for Cognitive Impairments in Humans? vol.11, pp.8, 2019, https://doi.org/10.3390/nu11081887
  4. The Alzheimer's Disease Exposome vol.15, pp.9, 2018, https://doi.org/10.1016/j.jalz.2019.06.3914
  5. Supplementation with Nicotinamide Riboside Reduces Brain Inflammation and Improves Cognitive Function in Diabetic Mice vol.20, pp.17, 2019, https://doi.org/10.3390/ijms20174196
  6. Evaluating the Potential of Younger Cases and Older Controls Cohorts to Improve Discovery Power in Genome-Wide Association Studies of Late-Onset Diseases vol.9, pp.3, 2018, https://doi.org/10.3390/jpm9030038
  7. Plant- and Nutraceutical-based Approach for the Management of Diabetes and its Neurological Complications: A Narrative Review vol.25, pp.33, 2018, https://doi.org/10.2174/1381612825666191014165633
  8. Advance of sporadic Alzheimer's disease animal models vol.40, pp.1, 2020, https://doi.org/10.1002/med.21624
  9. Dual Inhibition of DPP-4 and Cholinesterase Enzymes by the Phytoconstituents of the Ethanolic Extract of Prosopis cineraria Pods: Therapeutic Implications for the Treatment of Diabetes-associated Neur vol.16, pp.13, 2018, https://doi.org/10.2174/1567205016666191203161509
  10. A unified model of dementias and age‐related neurodegeneration vol.16, pp.2, 2018, https://doi.org/10.1002/alz.12012
  11. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies vol.31, pp.2, 2020, https://doi.org/10.1515/jbcpp-2019-0105
  12. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies vol.31, pp.2, 2020, https://doi.org/10.1515/jbcpp-2019-0105
  13. The Interplay between Diabetes and Alzheimer’s Disease—In the Hunt for Biomarkers vol.21, pp.8, 2018, https://doi.org/10.3390/ijms21082744
  14. Enzyme inhibitors from the aril of Myristica fragrans vol.130, pp.None, 2018, https://doi.org/10.1016/j.sajb.2019.12.020
  15. Intestinal Permeability and Oral Absorption of Selected Drugs Are Reduced in a Mouse Model of Familial Alzheimer’s Disease vol.17, pp.5, 2020, https://doi.org/10.1021/acs.molpharmaceut.9b01227
  16. Prevalence and Incidence of Dementia in People with Diabetes Mellitus vol.75, pp.2, 2020, https://doi.org/10.3233/jad-191115
  17. Does hyperglycemia downregulate glucose transporters in the brain? vol.139, pp.None, 2020, https://doi.org/10.1016/j.mehy.2020.109614
  18. The Role of Nutrition in Individualized Alzheimer’s Risk Reduction vol.9, pp.2, 2018, https://doi.org/10.1007/s13668-020-00311-7
  19. Impaired cerebral autoregulation is associated with poststroke cognitive impairment vol.7, pp.7, 2018, https://doi.org/10.1002/acn3.51075
  20. Production of Liquid Milk Protein Concentrate with Antioxidant Capacity, Angiotensin Converting Enzyme Inhibitory Activity, Antibacterial Activity, and Hypoallergenic Property by Membrane Filtration a vol.8, pp.7, 2018, https://doi.org/10.3390/pr8070871
  21. A novel 3D-printed centrifugal ultrafiltration method reveals in vivo glycation of human serum albumin decreases its binding affinity for zinc vol.12, pp.7, 2018, https://doi.org/10.1039/d0mt00123f
  22. Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery vol.33, pp.3, 2018, https://doi.org/10.1089/ars.2020.8076
  23. Upregulation of AMPK Ameliorates Alzheimer’s Disease-Like Tau Pathology and Memory Impairment vol.57, pp.8, 2018, https://doi.org/10.1007/s12035-020-01955-w
  24. Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential vol.1866, pp.10, 2020, https://doi.org/10.1016/j.bbadis.2020.165858
  25. Citrus hystrix Extracts Protect Human Neuronal Cells against High Glucose-Induced Senescence vol.13, pp.10, 2018, https://doi.org/10.3390/ph13100283
  26. Diabeteskomplikationen - Diabetes und Nervensystem vol.145, pp.22, 2018, https://doi.org/10.1055/a-1038-0102
  27. Depression as a Risk Factor for Dementia and Alzheimer’s Disease vol.8, pp.11, 2020, https://doi.org/10.3390/biomedicines8110457
  28. Role of sex and high-fat diet in metabolic and hypothalamic disturbances in the 3xTg-AD mouse model of Alzheimer’s disease vol.17, pp.1, 2018, https://doi.org/10.1186/s12974-020-01956-5
  29. Lifestyle intervention to prevent Alzheimer’s disease vol.31, pp.8, 2018, https://doi.org/10.1515/revneuro-2020-0072
  30. Lifestyle intervention to prevent Alzheimer’s disease vol.31, pp.8, 2018, https://doi.org/10.1515/revneuro-2020-0072
  31. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment vol.25, pp.24, 2018, https://doi.org/10.3390/molecules25245789
  32. Molecular mechanisms in Alzheimer's disease and the impact of physical exercise with advancements in therapeutic approaches vol.8, pp.3, 2018, https://doi.org/10.3934/neuroscience.2021020
  33. Peripheral or nonperipheral tetra‐[4‐(9H‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese(III) phthalocyanines: Synthesis, acetylcholinesterase, butyrylcholineste vol.35, pp.1, 2018, https://doi.org/10.1002/aoc.6021
  34. Indole-3-acetamides: As Potential Antihyperglycemic and Antioxidant Agents; Synthesis, In Vitro α-Amylase Inhibitory Activity, Structure-Activity Relationship, and In Silico Studies vol.6, pp.3, 2021, https://doi.org/10.1021/acsomega.0c05581
  35. Palmitic Acid, but Not Lauric Acid, Induces Metabolic Inflammation, Mitochondrial Fragmentation, and a Drop in Mitochondrial Membrane Potential in Human Primary Myotubes vol.8, pp.None, 2018, https://doi.org/10.3389/fnut.2021.663838
  36. Boswellic Acids as Promising Leads in Drug Development against Alzheimer’s Disease vol.27, pp.1, 2021, https://doi.org/10.34172/ps.2020.25
  37. The Inhibition of Metabolic Inflammation by EPA Is Associated with Enhanced Mitochondrial Fusion and Insulin Signaling in Human Primary Myotubes vol.151, pp.4, 2018, https://doi.org/10.1093/jn/nxaa430
  38. Serum Corticosterone and Insulin Resistance as Early Biomarkers in the hAPP23 Overexpressing Mouse Model of Alzheimer’s Disease vol.22, pp.13, 2018, https://doi.org/10.3390/ijms22136656
  39. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition vol.43, pp.None, 2018, https://doi.org/10.1016/j.redox.2021.102002
  40. Emerging Targets in Type 2 Diabetes and Diabetic Complications vol.8, pp.18, 2018, https://doi.org/10.1002/advs.202100275
  41. The Emerging Role of Metabolism in Brain-Heart Axis: New Challenge for the Therapy and Prevention of Alzheimer Disease. May Thioredoxin Interacting Protein (TXNIP) Play a Role? vol.11, pp.11, 2018, https://doi.org/10.3390/biom11111652
  42. Hearing difficulty is linked to Alzheimer’s disease by common genetic vulnerability, not shared genetic architecture vol.7, pp.1, 2021, https://doi.org/10.1038/s41514-021-00069-4
  43. The role of SLC transporters for brain health and disease vol.79, pp.1, 2018, https://doi.org/10.1007/s00018-021-04074-4
  44. The type 2 diabetes ‘modern preventable pandemic’ and replicable lessons from the COVID-19 crisis vol.25, pp.None, 2022, https://doi.org/10.1016/j.pmedr.2021.101636