DOI QR코드

DOI QR Code

Study of the 2H(7Be,p+3He+4He)n Reaction for Resonances in 8B

  • Chae, K.Y. (Department of Physics, Sungkyunkwan University) ;
  • Lee, J.H. (Department of Physics, Sungkyunkwan University)
  • Received : 2017.12.18
  • Accepted : 2018.01.19
  • Published : 2018.10.31

Abstract

The solar neutrino is a good probe for understanding the internal structure and the energy production mechanism of stars with masses of about that of the sun because it does not interact with other materials of the star. The production rate of the solar neutrino is largely uncertain due to the lack of nuclear structure information on the $^8B$ nucleus. In the search for resonances in the highly unstable nucleus $^8B$, which affect the production of solar neutrino, the $^2H(^7Be,\;p+^3He+^4He)n$ reaction was studied by using a radioactive $^7Be$ beam produced at the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory. Two layers of annular silicon strip detectors were used for particle identification, and the excitation energy of $^8B$ was reconstructed by requiring triple coincidence for p, $^3He$, and $^4He$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (University of Chicago Press, 1983).
  2. C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, 1988).
  3. T. Motobayashi et al., Phys. Rev. Lett. 73, 2680 (1994). https://doi.org/10.1103/PhysRevLett.73.2680
  4. L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shulgina and M. V. Zhukov, Phys. Rev. C 57, R2099 (1998). https://doi.org/10.1103/PhysRevC.57.R2099
  5. K. Ogata, M. Yahiro, Y. Iseri and M. Kamimura, Phys. Rev. C 67, 011602(R) (2003).
  6. Xian Chao Du, Bing Guo, Zhi Hong Li, Dan Yang Pang, Er Tao Li and Wei Ping Liu, Sci. China Phys. Mech. Astron. 58, 062001 (2015).
  7. R. Davis, Jr., Phys. Rev. Lett. 12, 303 (1964).
  8. J. N. Bahcall, W. F. Huebner, S. H. Lubow, P. D. Parker and R. K. Ulrich, Rev. Mod. Phys. 54, 767 (1982). https://doi.org/10.1103/RevModPhys.54.767
  9. R. Davis, Jr., D. S. Harmer and K. C. Homan, Phys. Rev. Lett. 20, 1205 (1968). https://doi.org/10.1103/PhysRevLett.20.1205
  10. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998). https://doi.org/10.1103/PhysRevLett.81.1562
  11. K. Y. Chae et al., J. Korean Phys. Soc. 61, 1786 (2012). https://doi.org/10.3938/jkps.61.1786
  12. L. Gialanella et al., Nucl. Instrum. Methods Phys. Res. B 197, 150 (2002). https://doi.org/10.1016/S0168-583X(02)01386-1
  13. D. W. Bardayan et al., Phys. Rev. C 63, 065802 (2001).
  14. http://www.micronsemiconductor.co.uk.
  15. L. V. Grigorenko, B. V. Danilin, V. D. Efros, N. B. Shulgina and M. V. Zhukov, Phys. Rev. C 60, 044312 (1999). https://doi.org/10.1103/PhysRevC.60.044312
  16. P. Descouvemont and D. Baye, Nucl. Phys. A 567, 341 (1994). https://doi.org/10.1016/0375-9474(94)90153-8
  17. R. J. A. Lambourne, Relativity, Gravitation and Cosmology, 1st ed. (Cambridge University Press, 2010), Chap. 2.
  18. G. F. Knoll, Radiation Detection and Measurement (Wiley, 2000).
  19. S. Kubono et al., Eur. Phys. J. A 13, 217 (2002).
  20. H. Yamaguchi et al., Nucl. Instrum. Methods Phys. Res. A 589, 150 (2008). https://doi.org/10.1016/j.nima.2008.02.013