DOI QR코드

DOI QR Code

Theoretically-based and practice-oriented formulations for the floor spectra evaluation

  • Abbati, Stefania Degli (Department of Civil, Chemical and Environmental Engineering, University of Genoa) ;
  • Cattari, Serena (Department of Civil, Chemical and Environmental Engineering, University of Genoa) ;
  • Lagomarsino, Sergio (Department of Civil, Chemical and Environmental Engineering, University of Genoa)
  • Received : 2018.08.03
  • Accepted : 2018.09.20
  • Published : 2018.11.25

Abstract

This paper proposes a new analytical formulation for computing the seismic input at various levels of a structure in terms of floor response spectra. The approach, which neglects the dynamic interaction between primary structure and secondary element, is particularly useful for the seismic assessment of secondary and non-structural elements. The proposed formulation has a robust theoretical basis and it is based on few meaningful dynamic parameters of the main building. The method has been validated in the linear and nonlinear behavior of the main building through results coming from both experimental tests (available in literature) and parametric numerical analyses. The conditions, for which the Floor Spectrum Approach and its simplified assumptions are valid, have been derived in terms of specific interval ratios between the mass of the secondary element and the participant mass of the main structure. Finally, a practice-oriented formulation has been derived, which could be easily implementable also at code level.

Keywords

References

  1. ASCE/SEI 41-13 (2014), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, VA, ISBN 978-0-7844-7791-5.
  2. Beyer, K., Tondelli, M., Petry, S. and Peloso, S. (2015), "Dynamic testing of a four-storey building with reinforced concrete and unreinforced masonry walls: prediction, test results and data set", Bull Earthq. Eng, 13(10), 3015-3060. https://doi.org/10.1007/s10518-015-9752-z
  3. Blandon, C.A. and Priestley, M.J.N. (2005), "Equivalent viscous damping equations for direct displacement based design", J. Earthq. Eng., 9(sup2), 257-278. https://doi.org/10.1142/S1363246905002390
  4. Burdisso, R.A. and Singh M.P. (1987b), "Multiply supported secondary systems part II: seismic inputs", Earthq. Eng. Struct. Dyn., 15, 73-90. https://doi.org/10.1002/eqe.4290150106
  5. Burdisso, R.A. and Singh, M.P. (1987a), "Multiply supported secondary systems part I: response spectrum analysis", Earthq. Eng. Struct. Dyn., 15, 53-72.
  6. Calvi, G.M. (1999), "A displacement-based approach for vulnerability evaluation of classes of buildings", J. Earthq. Eng., 3(3), 411-438. https://doi.org/10.1080/13632469909350353
  7. Calvi, G.M. and Sullivan, T.J. (2014), "Estimating floor spectra in multiple degree of freedom systems", Earthq. Struct., 7(1), 17-38. https://doi.org/10.12989/eas.2014.7.1.017
  8. Cattari, S. and Lagomarsino, S. (2013a), "Masonry structures", Developments in the Field of Displacement based Seismic Assessment, Eds. T. Sullivan and G.M. Calvi, 151-200.
  9. Cattari, S. and Lagomarsino, S. (2013b), "Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses", Earthq. Struct., 4(3), 241-264. https://doi.org/10.12989/eas.2013.4.3.241
  10. Cattari, S. and Sivori, D. (2017), "Lessons from the 2016 Central Italy earthquakes: the seismic behaviour of two masonry schools in Visso and Caldarola (Marche Region)", Bull. Earthq. Eng. (submitted)
  11. CEN (2004), Eurocode 8: Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, European Code EN 1998-1, European Committee for Standardization, Brussels.
  12. Chen, Y. and Soong, T.T. (1988), "State of art review seismic response of secondary systems", Eng. Struct., 10, 218-228. https://doi.org/10.1016/0141-0296(88)90043-0
  13. Curti, E. (2007), "Vulnerabilita sismica delle torri campanarie: modelli meccanici e macrosismici" Ph.D. Dissertation, University of Genoa, Genoa, Italy (in Italian).
  14. Degli Abbati, S. (2016), "Seismic assessment of single-block rocking elements in masonry structures", Ph.D. Dissertation, University of Genoa, Genoa (Italy).
  15. Der Kiureghian, A., Sackman, J. and Nour-Omid, B. (1983), "Dynamic analysis of light equipment in structures: response to stochastic input", J. Eng. Mech., 109(1), 90-110. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(90)
  16. Dolce, M., Nicoletti, M., De Sortis, A., Marchesini, S., Spina, D. and Talanas, F. (2017), "Osservatorio sismico delle strutture: the Italian structural seismic monitoring network", Bull. Earthq. Eng., 15, 621-641. https://doi.org/10.1007/s10518-015-9738-x
  17. Grunthal, G. (1998), "European macroseismic scale", Conseil de l'Europe, Cahiers du Centre Europe'en de Ge'odynamique et de Se'ismologie, Vol. 15, Luxembourg.
  18. Iervolino, I., Spillatura, A. and Bazzurro, P. (2018), "Seismic reliability of code-conforming italian buildings", J. Earthq. Eng., DOI: 10.1080/13632469.2018.1540372.
  19. Lagomarsino, S. (2015), "Seismic assessment of rocking masonry structures", Bull. Earthq. Eng., 13(1), 97-128. https://doi.org/10.1007/s10518-014-9609-x
  20. Lagomarsino, S., Penna, A., Galasco, A. and Cattari, S (2013), "TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings", Eng. Struct., 56, 1787-1799. https://doi.org/10.1016/j.engstruct.2013.08.002
  21. Lucchini, A., Franchin, P. and Mollaioli, F. (2017), "Uniform hazard floor acceleration spectra for linear structures", Earthq. Eng. Struct. Dyn., 46(7), 1121-1140. https://doi.org/10.1002/eqe.2847
  22. Matlab(R) (2017), Theory Manual, Version R2017a.
  23. Menon, A. and Magenes, G. (2011a), "Definition of seismic input for out-of-plane response of masonry walls: I. Parametric study", J. Earthq. Eng., 15(2), 165-194. https://doi.org/10.1080/13632460903456981
  24. Menon, A. and Magenes, G. (2011b), "Definition of seismic input for out-of-plane response of masonry walls: II. Formulation", J. Earthq. Eng., 15(2), 195-213. https://doi.org/10.1080/13632460903494446
  25. MIT (2009), Ministry of Infrastructures and Transportation, Circ. C.S.Ll. Pp. No. 617 2/2/2009, Istruzioni per l'applicazione delle nuove norme tecniche per le costruzioni di cui al Decreto Ministeriale 14 Gennaio 2008, G.U. S.O. n.27 of 26/2/2009, No. 47. (in Italian)
  26. Muscolino, G. (1991), "Dinamica di sistemi strutturali composti da due sottostrutture", Chapter contribution to the book "Problemi Strutturali nell'Ingegneria Sismica", Dario Flaccovio Editore, 255-302. (in Italian)
  27. NTC (2008), Decreto Ministeriale 14/1/2008. Norme tecniche per le costruzioni, Ministry of Infrastructures and Transportations, G.U. S.O. n.30 on 4/2/2008. (in Italian)
  28. NZS 1170.5 (2006), Assessment and Improvement of the Structural Performance of Buildings in Earthquake, Recommendations of a NZSEE Study Group, New Zealand Society for Earthquake Engineering, Wellington, New Zealand.
  29. Petrone, C., Magliulo, G. and Manfredi, G. (2015), "Seismic demand on light acceleration-sensitive nonstructural components in European reinforced concrete buildings", Earthq. Eng. Struct. Dyn., 44, 1203-1217.
  30. Reluis-Task 4.1 Workgroup (2017), S. Cattari, S. Degli Abbati, D. Ottonelli, D. Sivori, E. Spacone, G. Camata, C. Marano, F. Da Porto, F. Lorenzoni, A. Calabria, A. Penna, F. Graziotti, R. Ceravolo, E. Matta, G. Miraglia, D. Spina, N. Fiorini, "Report di sintesi sulle attivita svolte sugli edifici monitorati dall Osservatorio Sismico delle Strutture", ReLUIS report, Rete dei Laboratori Universitari di Ingegneria Sismica, Naples. (in Italian)
  31. RINTC Workgroup (2018), "Results of the 2015-2017 implicit seismic risk of code-conforming structures in Italy (RINTC) project", ReLUIS Report, Rete dei Laboratori Universitari di Ingegneria Sismica, Naples. Available at http://www.reluis.it/.
  32. SIA 261 2003 (2003), Actions on Structures, Swiss Norm, Swiss Society of Engineers and Architects, Zurich.
  33. Singh, M.P. (1975), "Generation of seismic floor spectra", J. Eng. Mech. Div., ASCE, 101(EM5), 593-607.
  34. Singh, M.P. (1980), "Seismic design input for secondary systems", J. Struct. Div., ASCE, 106(ST2), 505-517.
  35. Sullivan, T.J., Calvi, P.M. and Nascimbene, R. (2013), "Towards improved floor spectra estimates for seismic design", Earthq. Struct., 4(1), 109-132. https://doi.org/10.12989/eas.2013.4.1.109
  36. Villaverde, R. (1997), "Seismic design of secondary structures: state of the art", J. Struct. Eng., ASCE, 123(8), 1011-1019. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:8(1011)
  37. Vukobratovic, V. and Fajfar, P. (2015), "A method for the direct determination of approximate floor response spectra for SDOF inelastic structures", Bull. Earthq. Eng., 13(5), 1405-1424. https://doi.org/10.1007/s10518-014-9667-0
  38. Vukobratovic, V. and Fajfar, P. (2016), "A method for the direct estimation of floor acceleration spectra for elastic and inelastic MDOF structures", Bull. Earthq. Struct. Dyn., 45(15), 2495-2511. https://doi.org/10.1002/eqe.2779
  39. Vukobratovic, V. and Fajfar, P. (2017), "Code-oriented floor acceleration spectra for building structures", Bull. Earthq. Eng., 15(7), 3013-3026. https://doi.org/10.1007/s10518-016-0076-4

Cited by

  1. Displacement-Based Simplified Seismic Loss Assessment of Masonry Buildings vol.24, pp.suppl1, 2018, https://doi.org/10.1080/13632469.2020.1755747
  2. A novel risk assessment approach for data center structures vol.19, pp.6, 2018, https://doi.org/10.12989/eas.2020.19.6.471
  3. Fragility Functions for Tall URM Buildings around Early 20th Century in Lisbon. Part 1: Methodology and Application at Building Level vol.15, pp.3, 2021, https://doi.org/10.1080/15583058.2019.1618974