DOI QR코드

DOI QR Code

Rapid evaluation of in-plane seismic capacity of masonry arch bridges through limit analysis

  • Breccolotti, Marco (Department of Civil and Environmental Engineering, University of Perugia) ;
  • Severini, Laura (Department of Civil and Environmental Engineering, University of Perugia) ;
  • Cavalagli, Nicola (Department of Civil and Environmental Engineering, University of Perugia) ;
  • Bonfigli, Federico M. (Department of Civil and Environmental Engineering, University of Perugia) ;
  • Gusella, Vittorio (Department of Civil and Environmental Engineering, University of Perugia)
  • Received : 2018.06.28
  • Accepted : 2018.09.11
  • Published : 2018.11.25

Abstract

In this paper a limit analysis based procedure for the rapid evaluation of the in-plane seismic capacity of masonry arch bridges is carried out. Attention has been paid to the effect of the backfill on the collapse load. A parametric investigation has been performed by varying the rise/span ratio and the results have been compared with those obtained by finite element modelling. The comparison highlights the conservative feature of the proposed model in terms of ultimate loads and a good agreement in terms of collapse mechanisms.

Keywords

References

  1. ABAQUS V6.14 (2014), Analysis User's Guide, Dessault Systemes Simulia Corp., Providence, RI, USA.
  2. Alexakis, H. and Makris, N. (2014), "Limit equilibrium analysis and the minimum thickness of circular masonry arches to withstand lateral inertial loading", Arch. Appl. Mech., 84, 757-772. https://doi.org/10.1007/s00419-014-0831-4
  3. Bertolesi, E., Milani, G., Carozzi, F.G. and Poggi, C. (2018), "Ancient masonry arches and vaults strengthened with TRM and FRP composites: numerical analyses", Compos. Struct., 187, 385-402. https://doi.org/10.1016/j.compstruct.2017.12.021
  4. Bertolesi, E., Milani, G., Lopane, F.D. and Acito, M. (2017), "Augustus Bridge in Narni (Italy): Seismic vulnerability assessment of the still standing part, possible causes of collapse, and importance of the roman concrete infill in the seismicresistant behavior", Int. J. Arch. Heritage, 11(5), 717-746.
  5. Brencich, A., Cassini, G. and Pera, D. (2016), "Load bearing structure of masonry bridges", Proceedings of the 8th International Conference on Arch Bridges, Wroklaw, Poland, October.
  6. Brinch-Hansen, J. (1963), "Hyperbolic stress-strain response: Cohesive soils", Discussion, Am. Soc. Civil Eng. J. Soil Mech. Found. Div., 89(SM4), 241-242.
  7. Burroughs, P., Hughes, T.G., Hee, S. and Davies, M.C.R. (2002), "Passive pressure development in masonry arch bridges", Proc. Inst. Civil Eng. Struct. Build., 153, 331-339.
  8. Calderini, C. and Lagomarsino, S. (2015), "Seismic response of masonry arches reinforced by tie-rods: Static tests on a scale model", J. Struct. Eng., 141(5), 4014137. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001079
  9. Callaway, P., Gilbert, M. and Smith, C.C. (2012), "Influence of backfill on the capacity of masonry arch bridges", Proc. Inst. Civil Eng.: Bridge Eng., 165(3), 147-158.
  10. Caporale, A., Luciano, R. and Rosati, L. (2006), "Limit analysis of masonry arches with externally bonded FRP reinforcements", Comput. Meth. Appl. Mech. Eng., 196(1-3), 247-260. https://doi.org/10.1016/j.cma.2006.03.003
  11. Cavalagli, N. and Gusella, V. (2015), "Dome of the Basilica of Santa Maria degli Angeli in Assisi: Static and dynamic assessment", Int. J. Arch. Heritage, 9(2), 157-175. https://doi.org/10.1080/15583058.2014.951799
  12. Cavalagli, N., Gusella, V. and Severini, L. (2016), "Lateral loads carrying capacity and minimum thickness of circular and pointed masonry arches", Int. J. Mech. Sci., 115-116, 645-656. https://doi.org/10.1016/j.ijmecsci.2016.07.015
  13. Cavalagli, N., Gusella, V. and Severini, L. (2017), "The safety of masonry arches with uncertain geometry", Comput. Struct., 188, 17-31.
  14. Cavicchi, A. and Gambarotta, L. (2005), "Collapse analysis of masonry bridges taking into account arch-fill interaction", Eng. Struct., 27, 605-615. https://doi.org/10.1016/j.engstruct.2004.12.002
  15. CEN-European Committee for Standardization (2008), EN 1998-2 Eurocode 8-Design of Structures for Earthquake Resistance Part 2: Bridges, Brussels (B).
  16. Clemente, P. (1998), "Introduction to dynamics of stone arches", Earthq. Eng. Struct. Dyn., 27, 513-522. https://doi.org/10.1002/(SICI)1096-9845(199805)27:5<513::AID-EQE740>3.0.CO;2-O
  17. D'Ambrisi, A., Focacci, F., Luciano, R., Alecci, V. and De Stefano, M. (2015), "Carbon-FRCM materials for structural upgrade of masonry arch road bridges", Compos. Part B, 75, 355-366.
  18. Da Porto, F., Tecchio, G., Zampieri, P., Modena, C. and Prota, A. (2016), "Simplified seismic assessment of railway masonry arch bridges by limit analysis", Struct. Infrastr. Eng., 12, 567-591.
  19. De Lorenzis, L., DeJong, M. and Ochsendorf, J. (2007), "Failure of masonry arches under impulse base motion", Earthq. Eng. Struct. Dyn., 36, 2119-2136. https://doi.org/10.1002/eqe.719
  20. De Santis, S. and De Felice, G. (2014), "A fibre beam-based approach for the evaluation of the seismic capacity of masonry arches", Earthq. Eng. Struct. Dyn., 43, 1661-1681. https://doi.org/10.1002/eqe.2416
  21. DeJong, M., De Lorenzis, L., Adams, S. and Ochsendorf, J. (2008), "Rocking stability of masonry arches in seismic regions", Earthq. Spectra, 24(4), 847-865. https://doi.org/10.1193/1.2985763
  22. Di Carlo, F., Coccia, S. and Rinaldi, Z. (2018), "Collapse load of a masonry arch after actual displacements of the supports", Arch. Appl. Mech., 88(9), 1545-1558.
  23. Drosopoulos, G.A., Stavroulakis, G.E. and Massalas, C.V. (2006), "Limit analysis of a single span masonry bridge with unilateral frictional contact interfaces", Eng. Struct., 28, 1864-1873. https://doi.org/10.1016/j.engstruct.2006.03.016
  24. Franciosi, C. (1986), "Limit behaviour of masonry arches in the presence of finite displacements", Int. J. Mech. Sci., 28(7), 463-471. https://doi.org/10.1016/0020-7403(86)90066-4
  25. Gago, A.S., Alfaiate, J. and Lamas, A. (2011), "The effect of the infill in arched structures: Analytical and numerical modelling", Eng. Struct., 33(5), 1450-1458. https://doi.org/10.1016/j.engstruct.2010.12.037
  26. Galassi, S., Misseri, G., Rovero, L. and Tempesta, G. (2018), "Failure modes prediction of masonry voussoir arches on moving supports", Eng. Struct., 173, 706-717. https://doi.org/10.1016/j.engstruct.2018.07.015
  27. Gelfi, P. and Capretti, A. (2001), "Backfill role on the stability of arches and vaults", Tran. Built Environ., 55, 295-304.
  28. Gioffre, M., Gusella, V. and Cluni, F. (2008), "Performance evaluation of monumental bridges: Testing and monitoring 'Ponte delle Torri' in Spoleto", Struct. Infrastr. Eng., 4(2), 95-106. https://doi.org/10.1080/15732470601155300
  29. Heyman, J. (1969), "The safety of masonry arches", Int. J. Mech. Sci., 11, 363-385.
  30. Huges, T.G., Davies, M.C.R. and Taunton, P.R. (1998), "The influence of soil and masonry type on the strength of masonry arch bridges", Arch Bridges. History, Analysis, Assessment, Maintenance and Repair, Ed. A. Sinopoli, Proceeding of the Second International Arch Bridge Conference, Venice, Italy, October.
  31. Krajewski, P. and Hojdys, L. (2015), "Experimental studies on buried barrel vaults", Int. J. Arch. Heritage, 9, 834-843. https://doi.org/10.1080/15583058.2013.860499
  32. LimitState: RING Manual (2014), Version 3.1.a., LimitState Ltd, Sheffield, United Kingdom.
  33. Milani, G. and Lourenco P.B. (2012), "3D non-linear behavior of masonry arch bridges", Comput. Struct., 110-111, 133-150. https://doi.org/10.1016/j.compstruc.2012.07.008
  34. Miriano, C., Cattoni, E. and Tamagnini, C. (2016), "Advanced numerical modelling of seismic response of a propped RC diaphragm wall", Acta Geotechnica, 11, 161-175. https://doi.org/10.1007/s11440-015-0378-8
  35. Molins, C. and Roca, P. (1998), "Capacity of masonry arches and spatial frames", J. Struct. Eng., 124(6), 653-663. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(653)
  36. Ng, K.H. and Fairfield, C.A. (2004), "Modifying the mechanism method of masonry arch bridge analysis", Constr. Build. Mater., 18(2), 91-97. https://doi.org/10.1016/j.conbuildmat.2003.08.015
  37. Oppenheim, I. (1992), "The masonry arch as a four-link mechanism under base motion", Earthq. Eng. Struct. Dyn., 21, 1005-1017. https://doi.org/10.1002/eqe.4290211105
  38. Page, J. (1987), "Load tests to collapse on two arch bridges at Preston, Shropshire and Prestwood, Staffordshire", Department of Transport, TRRL Research report 110, Crowthorne, England.
  39. Pela, L., Aprile, A. and Benedetti, A. (2009), "Seismic assessment of masonry arch bridges", Eng. Struct., 31(8), 1777-1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  40. Pela, L., Aprile, A. and Benedetti, A. (2013), "Comparison of seismic assessment procedures for masonry arch bridges", Constr. Build. Mater., 38, 381-394.
  41. Rovithis, E.N. and Pitilakis, K.D. (2016), "Seismic assessment and retrofitting measures of a historic stone masonry bridge", Eartq. Struct., 10(3), 645-667. https://doi.org/10.12989/eas.2016.10.3.645
  42. Sarhosis, V., De Santis, S. and De Felice, G. (2016), "A review of experimental investigations and assessment methods for masonry arch bridges", Struct. Infrastr. Eng., 12(11), 1439-1464.
  43. Sayin, E. (2016), "Nonlinear seismic response of a masonry arch bridge", Eartq. Struct., 10(2), 483-494.
  44. Severini, L., Cavalagli, N., DeJong, M. and Gusella, V. (2018), "Dynamic response of masonry arch with geometrical irregularities subjected to a pulse-type ground motion", Nonlin. Dyn., 91(1), 609-624.
  45. Smith, C.C., Gilbert, M. and Callaway, P.A. (2004), "Geotechnical issues in the analysis of masonry arch bridges", Proceedings of the 4th International Conference on Arch Bridges, 3, Barcelona, Spain, November.
  46. Stockdale, G., Tiberti, S., Camilletti, D., Sferrazza Papa, G., Basshofi Habieb, A., Bertolesi, E., Milani, G. and Casolo, S. (2018), "Kinematic collapse load calculator: Circular arches", Software X, 7, 174-179.
  47. Tiberti, S., Acito, M. and Milani, G. (2016), "Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis", Eng. Struct., 117, 397-421. https://doi.org/10.1016/j.engstruct.2016.02.048
  48. Zampieri, P., Cavalagli, N., Gusella, V. and Pellegrino, C. (2018), "Collapse displacements of masonry arch with geometrical uncertainties on spreading supports", Comput. Struct., 208, 118-129. https://doi.org/10.1016/j.compstruc.2018.07.001
  49. Zampieri, P., Zanini, M.A. and Modena, C. (2015), "Simplified seismic assessment of multi-span masonry arch bridges", Bull. Earthq. Eng., 13, 2329-2646.
  50. Zampieri, P., Zanini, M.A., Faleschini, F., Hofer, L. and Pellegrino, C. (2017), "Failure analysis of masonry arch bridges subject to local pier scour", Eng. Fail. Anal., 79, 371-378. https://doi.org/10.1016/j.engfailanal.2017.05.028

Cited by

  1. Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar vol.19, pp.6, 2018, https://doi.org/10.12989/eas.2020.19.6.411
  2. Investigation on Seismic Behavior of Historical Tokatlı Bridge under Near-Fault Earthquakes vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5596760
  3. Effect of near-fault earthquakes on a historical masonry arch bridge (Konjic Bridge) vol.21, pp.2, 2018, https://doi.org/10.12989/eas.2021.21.2.125