DOI QR코드

DOI QR Code

Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D

  • Haeri, Hadi (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (MOE Key Laboratory of Deep Underground Science and Engineering, School of Architecture and Environment, Sichuan University)
  • Received : 2018.08.08
  • Accepted : 2018.10.11
  • Published : 2018.11.25

Abstract

In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly punch shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear punch test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear punch test tensile strength was increased by increasing the layer thickness.

Keywords

References

  1. Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
  2. Al-Harthi, A.A. (1998) "Effect of planar structures on the anisotropy of ranyah sandstone", Saudi Arab. Eng. Geol., 50, 49-57.
  3. Amadei, B., Rogers, J.D. and Goodman, R.E. (1983), "Elastic constants and tensile strength of anisotropic rocks", Proceedings of the 5th International Congress of Rock Mechanics.
  4. Amadei, B. (1982), "The influence of rock anisotropy on measurement of stresses in-situ", Ph.D. Dissertation, University of California, Berkeley, U.S.A.
  5. Amadei, B. (1996), "Importance of anisotropy when estimating and measuring in situ stresses in rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(3), 293-325. https://doi.org/10.1016/0148-9062(95)00062-3
  6. Backers, T., Stephansson, O. and Rybacki, E. (2002), "Rock fracture toughness testing in mode ii punch-through shear test", Int. J. Rock Mech. Min. Sci., 39, 755-769.
  7. Barla, G. (1974), "Rock anisotropy: Theory and laboratory testing", Rock Mech., 131-16.
  8. Berenbaum, R. and Brodie, I (1959), "The tensile strength of coal", J. Inst. Fuel, 32(222), 320-326.
  9. Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y
  10. Bi, J., Zhou, X.P. and Xu, X. (2017), "Numerical simulation of failure process of rock-like materials subjected to impact loads", Int. J. Geomech., 17(3), 16-28.
  11. Chen, C.S., Pan, E. and Amadei, B. (1998), "Determination strength of anisotropic Brazilian tests of deformability and tensile rock using", Int. J. Rock Mech. Min. Sci., 35(1), 43-61. https://doi.org/10.1016/S0148-9062(97)00329-X
  12. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44, 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002
  13. Cho, N., Martin, C.D. and Sego, D.C. (2008), "Development of a shear zone in brittle rock subjected to direct shear", Int. J. Rock Mech. Min. Sci., 45, 1335-1346. https://doi.org/10.1016/j.ijrmms.2008.01.019
  14. Chou, Y.C. and Chen, C.S. (2008), "Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure", Int. J. Numer. Analy. Meth. Geomech., 32(3), 219-234. https://doi.org/10.1002/nag.619
  15. Debecker, B. and Vervoort, A. (2009), "Experimental observation of fracture patterns in layered slate", Int. J. Fract., 159, 51-62. https://doi.org/10.1007/s10704-009-9382-z
  16. Donze, F.V., Richefeu, V. and Magnier, S.A. (2009), "Advances in discrete element method applied to soil rock and concrete mechanics", Electr. J. Geol. Eng., 8, 1-44.
  17. Exadaktylos, G.E. and Kaklis, K.N. (2001), "Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically", Int. J. Rock Mech. Min. Sci., 38(2), 227-243. https://doi.org/10.1016/S1365-1609(00)00072-1
  18. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Sol., 22, 1205-1218.
  19. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91.
  20. Goodman, R.E. (1993), Engineering Geology-Rock in Engineering Construction, John Wiley and Sons, Inc., New York, U.S.A.
  21. Haeri, H. (2015b), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496. https://doi.org/10.1134/S1062739115030096
  22. Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinic., 5, 555-566.
  23. Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  24. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.
  25. Haeri, H. (2015c), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623, https://doi.org/10.12989/cac.2015.16.4.605
  26. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  27. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  28. Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
  29. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  30. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/CAC.2016.17.5.639
  31. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723
  32. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the ICF13.
  33. Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
  34. Hobbs, D.W. (1963), "The strength and stress-strain characteristics of coal in triaxial compression", J. Geol., 72, 214-223.
  35. Hoek, E. (1964), "Fracture of transversely isotropic rock", J. S. Afr. Inst. Min. Met., 64, 501-518.
  36. Horino, F.G. and Ellickson, M.L. (1970), A Method of Estimating Strength of Rock Containing Planes of Weakness, Report of Investigation 744, US Bureau of Mines.
  37. Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Minneapolis.
  38. Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength mortar", Comput. Mortar, 15(2), 102-111.
  39. Kwasniewski, M. (1993), Mechanical Behavior of Transversely Isotropic Rocks, In: Hudson, J.A. (ed) Comprehensive Rock Engineering, Pergamon, Oxford, 1, 285-312.
  40. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  41. Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 55-67.
  42. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  43. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  44. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
  45. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  46. Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Imp. Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
  47. McLamore, R. and Gray, K.E. (1967), "The mechanical behavior of transversely isotropic sedimentary rocks", Trans. Am. Soc. Mech. Eng. Ser. B, 62-76.
  48. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  49. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance mortar using response surface method", Comput. Mortar, 17(4), 33-39.
  50. Nasseri, M.H. Rao, K.S. and Ramamurthy, T. (1997) "Failure mechanism in schistose rocks", Int. J. Rock Mech. Min. Sci., 34(3-4), 21-39.
  51. Nasseri, M.H.B., Rao, K.S. and Ramamurthy T. (2003), "Anisotropic strength and deformational behavior of Himalayan schists", Int. J. Rock Mech. Min. Sci., 40(1), 3-23. https://doi.org/10.1016/S1365-1609(02)00103-X
  52. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398.
  53. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  54. Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4), 167-181.
  55. Pinto, J.L. (1966), "Stresses and strains in anisotropic orthotropic body", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
  56. Pinto, J.L. (1970), "Deformability of schistous rocks", Proceedings of the 2nd International Congress of Rock Mechanics, 2-30.
  57. Pinto, J.L. (1979), "Determination of the elastic constants of anisotropic bodies by diametral compression tests", Proceedings of the 4th International Congress of Rock Mechanics, 359-363.
  58. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  59. Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
  60. Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
  61. Ramamurthy, T. (1993), Strength, Modulus Responses of Anisotropic Rocks, In: Hudson, J.A., Editor Comprehensive Rock Engineering, Oxford, Pergamon Press, 1, 313-329.
  62. Rodrigues (1966) "Anisotropy of gr anites: Modulus of elasticity and ultimate strength ellipsoids, joint systems, slope attitudes, and their correlations", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
  63. Saeidi, O., Rasouli, V., Geranmayeh Vaneghi, R., Gholami, R. and Torabi, R. (2013), "A modified failure criterion for transversely isotropic rocks", Geosci. Front.
  64. Salamon, M.D.G. (1968), "Elastic moduli of a stratified rock mass", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 5(6), 519-512. https://doi.org/10.1016/0148-9062(68)90039-9
  65. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  66. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  67. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 23-35.
  68. Silling, S.A. (2000), "Reformulation of elasticity theory for discontinuities and long-range forces", J. Mech. Phys. Sol., 48(1), 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  69. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  70. Singh, J., Ramamurth, T. and Venkatappa, R.G. (1989), "Strength anisotropies in rocks", Ind. Geotech. J., 19(2), 147-166.
  71. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sand stone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
  72. Tavallali, A. and Vervoort, A. (2010), "Failure of layered sandstone under Brazilian test conditions: Effect of micro-scale parameters on macro-scale behaviour", Rock Mech. Rock Eng., 43, 641-645. https://doi.org/10.1007/s00603-010-0084-7
  73. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  74. Tien, Y.M. and Kuo, M.C. (2006), "An experimental investigation of the failure mechanism of simulated transversely isotropic rocks", Int. J. Rock Mech. Min. Sci., 43, 1163-1181. https://doi.org/10.1016/j.ijrmms.2006.03.011
  75. Tien, Y.M. and Tsao, P.F. (2000), "Preparation and mechanical properties of artificial transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 37(6), 1001-1012. https://doi.org/10.1016/S1365-1609(00)00024-1
  76. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Proc. Soc. Behav. Sci., 198, 2280-2289.
  77. Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
  78. Wang, Y., Zhou, X.P. and Kou, M. (2018), "Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles", Ceram. Int., 44(10), 11512-11542. https://doi.org/10.1016/j.ceramint.2018.03.214
  79. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  80. Wu Z.J., Ngai L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using numerical Manifold method", Constr. Build. Mater., 72, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.082
  81. Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6).
  82. Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms", Int. J. Fract., 189, 1-32. https://doi.org/10.1007/s10704-014-9959-z
  83. Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80. https://doi.org/10.1007/s10704-013-9876-6
  84. Zhou, X.P., Xia, E.M., Yang, H.Q. and Qian, Q.H. (2012), "Different crack sizes analyzed for surrounding rock mass around underground caverns in Jinping I hydropower station", Theoret. Appl. Fract. Mech., 57(1), 19-30. https://doi.org/10.1016/j.tafmec.2011.12.004
  85. Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng. 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4
  86. Zhou, X.P., Zhang, Y.X. and Ha, Q.L. (2008), "Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading", Theoret. Appl. Fract. Mech., 50(1), 49-56. https://doi.org/10.1016/j.tafmec.2008.04.005
  87. Zhou, X.P. (2004), "Analysis of the localization of deformation and the complete stress-strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading, International journal of solids and structures", 41(5/6), 1725-1738.
  88. Zhou, X.P., Gu, X.B. and Wang, Y.T. (2015), "Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks", International journal of rock mechanics and mining science, 80, 241-254.
  89. Zhou, X.P., Ha, Q., Zhang, Y. and Zhu, K. (2004), "Analysis of deformation localization and the complete stress-strain relation for brittle rock subjected to dynamic compressive loads", Int. J. Rock Mech. Min. Sci., 41(2), 311-319. https://doi.org/10.1016/S1365-1609(03)00094-7
  90. Zhou, X.P., Shou, Y.D., Qian, Q.H. and Yu, M.H. (2014), "Threedimensional nonlinear strength criterion for rock-like materials based on the micromechanical method", Int. J. Rock Mech. Min. Sci., 72, 54-60. https://doi.org/10.1016/j.ijrmms.2014.08.013
  91. Zhou, X.P. and Yang, H.Q. (2007), "Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock", Theoret. Appl. Fract. Mech., 48(1), 1-20. https://doi.org/10.1016/j.tafmec.2007.04.008
  92. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001

Cited by

  1. Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction vol.74, pp.2, 2018, https://doi.org/10.12989/sem.2020.74.2.283