Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Banerjee J.R. (1989), "Coupled bending-torsional dynamic stiffness matrix for beam elements", Int. J. Numer. Meth. Eng., 28(6), 1283-1289. https://doi.org/10.1002/nme.1620280605
- Banerjee J.R. (1997), "Dynamic stiffness formulation for structural elements: a general approach", Comput. Struct., 63(1), 101-103. https://doi.org/10.1016/S0045-7949(96)00326-4
- Banerjee, J.R. and Fisher, S.A. (1992), "Coupled bending-torsional dynamic stiffness matrix for axially loaded beam elements", Int. J. Numer. Meth. Eng., 33(4), 739-751. https://doi.org/10.1002/nme.1620330405
- Banerjee, J.R. and Williams, F.W. (1985), "Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams", Int. J. Numer. Meth. Eng., 21(12), 2289-2302. https://doi.org/10.1002/nme.1620211212
- Banerjee, J.R. and Williams, F.W. (1992), "Coupled bendingtorsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0045-7949(92)90026-V
- Bao, Y.Q., Shi, Z.Q., Beck, J.L., Li, H. and Hou, T.Y. (2017), "Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations", Struct. Contr. Health Monitor., 24(3).
- Cheng, F.Y. (1970), "Vibration of Timoshenko beams and frameworks", J. Struct. Div., 96(3), 551-571.
- Cheng, F.Y. and Tseng, W.H. (1973), "Dynamic matrix of Timoshenko beam columns", J. Struct. Div., 99(3), 527-549.
- Clough, R.W. and Penzien, J. (1995), Dynamics of Structures, 3rd Edition, Computer & Structures, Inc., Berkeley, U.S.A.
- Friberg, P.O. (1983), "Coupled vibration of beams-an exact dynamic element stiffness matrix", Int. J. Numer. Meth. Eng., 19(4), 479-493. https://doi.org/10.1002/nme.1620190403
- Hallauer, W.L. and Liu, R.Y.L. (1982), "Beam bending-torsion dynamic stiffness method for calculation of exact vibration modes", J. Sound Vibr., 85(1), 105-113. https://doi.org/10.1016/0022-460X(82)90473-4
- Hashemi, S.M. and Richard, M.J. (2000), "A dynamic finite element (DFE) method for free vibrations of bending-torsion coupled beam", Aerosp. Sci. Technol., 4(1), 41-55. https://doi.org/10.1016/S1270-9638(00)00114-0
- Howson, W.P. and Williams, F.W. (1973), "Natural frequencies of frames with axially loaded Timoshenko members", J. Sound Vibr., 26(4), 503-515. https://doi.org/10.1016/S0022-460X(73)80216-0
- Huang, Y.H., Fu, J.Y., Gan, Q., Wang, R.H., Pi, Y.L. and Liu, A.R. (2017), "New method for identifying internal forces of hangers based on form-finding theory of suspension cable", J. Brid. Eng., 22(11), 96-105.
- Huang, Y.H., Fu, J.Y., Wang, R.H., Gan, Q. and Liu, A.R. (2015), "Unified practical formulas for vibration-based method of cable tension estimation", Adv. Struct. Eng., 18(3), 405-422. https://doi.org/10.1260/1369-4332.18.3.405
- Huang, Y.H., Fu, J.Y., Wang, R.H., Gan, Q., Rao, R. and Liu, A.R. (2015), "Practical formula to calculate tension of vertical cable with hinged-fixed conditions based on vibration method", J. Vibroeng., 16(2), 997-1009.
- Issa, M.S. (1988), "Natural frequencies of continuous curved beams on Winkler-type foundation", J. Sound Vibr., 127(2), 291-301. https://doi.org/10.1016/0022-460X(88)90304-5
- Kalousek, V. (1973), Dynamics in Engineering Structures, Butterworths, London, U.K.
- Kim, B.H. and Park, T. (2007), "Estimation of cable tension force using the frequency-based system identification method", J. Sound Vibr., 304(3-5), 660-676. https://doi.org/10.1016/j.jsv.2007.03.012
- Kim, J.M., Lee, J. and Sohn, H. (2018), "Detection of tension force reduction in a post-tensioning tendon using pulsed-eddycurrent measurement", Struct. Eng. Mech., 62(2), 129-139.
- Kolousek, V. (1941), "Anwendung des Gesetzes der virtuellen Verschiebungen und des Reziprozitatssatzes in der Stabwerksdynamic", Arch. Appl. Mech., 12(6), 363-370.
- Leung, A.Y.T. (1992), "Dynamic stiffness for lateral buckling", Comput. Struct., 42(3), 321-325. https://doi.org/10.1016/0045-7949(92)90028-X
- Liao, W.Y., Ni, Y.Q. and Zheng, G. (2012), "Tension force and structural parameter identification of bridge cables", Adv. Struct. Eng., 15(6), 983-995. https://doi.org/10.1260/1369-4332.15.6.983
- Lunden, R. and Akesson, B.A. (1983), "Damped second-order Rayleigh-Timoshenko beam vibration in spacean exact complex dynamic member stiffness matrix", Int. J. Numer. Meth. Eng., 19(3), 431-449. https://doi.org/10.1002/nme.1620190310
- Ma, H.T. (2008), "Exact solutions of axial vibration problems of elastic bars", Int. J. Numer. Meth. Eng., 16(5), 241-252.
- Ma, H.T. (2010), "Exact solution of vibration problems of frame structures", Commun. Numer. Meth. Eng., 26(5), 587-596.
- Ma, L. (2017), "A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions", J. Sound Vibr., 409, 65-80. https://doi.org/10.1016/j.jsv.2017.07.043
- Maes, K., Peeters, J., Reynders, E., Lombaert, G. and Roeck, G.D. (2017), "Identification of axial forces in beam members by local vibration measurements", J. Sound Vibr., 332(21), 5417-5432. https://doi.org/10.1016/j.jsv.2013.05.017
- Mohammadnejad, M. and Kazemi, H.H. (2018), "A new and simple analytical approach to determining the natural frequencies of framed tube structures", Struct. Eng. Mech., 56(6), 939-957. https://doi.org/10.12989/sem.2015.56.6.939
- Mohsin, M.E. and Sadek, E.A. (1968), "The distributed massstiffness technique for the dynamical analysis of complex frameworks", Struct. Eng., 46(11), 345-351.
- Park, D.U. and Kim, N.S. (2014), "Back analysis technique for tensile force on hanger cables of a suspension bridge", J. Vibr. Contr., 20(5), 761-772. https://doi.org/10.1177/1077546312464679
- Wang, J., Liu, W.Q., Lu, W. and Han, X.J. (2015), "Estimation of main cable tension force of suspension bridges based on ambient vibration frequency measurements", Struct. Eng. Mech., 56(6), 939-957. https://doi.org/10.12989/sem.2015.56.6.939
- Wang, R.H., Gan, Q., Huang, Y.H. and Ma, H.T. (2011), "Estimation of tension in cables with intermediate elastic supports using finite-element method", J. Brid. Eng., 16(5), 675-678. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000192
- Wang, T.M. and Kinsman, T.A. (1970), "Vibration of frame structures according to the Timoshenko theory", J. Sound Vibr., 14(2), 215-227. https://doi.org/10.1016/0022-460X(71)90385-3
- Williams, F.W. and Kennedy, D. (1987), "Exact dynamic member stiffnesses for a beam on an elastic foundation", Earthq. Eng. Struct. Dyn., 15(1), 133-136. https://doi.org/10.1002/eqe.4290150110
- Wittrick, W.H. and Williams, F.W. (1971), "A general algorithm for computing natural frequencies of elastic structures", Quarter. J. Mech. Appl. Math., 24(3), 263-284. https://doi.org/10.1093/qjmam/24.3.263
- Yan, B.F., Yu, J.Y. and Soliman, M. (2015), "Estimation of cable tension force independent of complex boundary conditions", J. Eng. Mech., 141(1), 15-22.
- Yuan, S., Ye, K.S., Xiao, C., Williams, F.W. and Kennedy, D. (2007), "Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations and Bernoulli-Euler column buckling", J. Sound Vibr., 303(1), 526-537. https://doi.org/10.1016/j.jsv.2007.01.036
- Yucel, A., Arpaci, A. and Tufekci, E. (2014), "Coupled axialflexural-torsional vibration of Timoshenko frames", J. Sound Vibr., 20(15), 2366-2377.
- Zarhaf, S.E.H.A.M., Norouzi, M., Allemang, R.L., Hunt, V.J., Helmicki, A. and Nims, D.K. (2017), "Stay force estimation in cable-stayed bridges using stochastic subspace identification methods", J. Brid. Eng., 22(9), 04017055. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001091
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method for Solid and Structural Mechanics, 2nd Eition, Butterworth-Heinemann, Oxford.
Cited by
- Numerical assessment of the damage-tolerance properties of polyester ropes and metallic strands vol.79, pp.1, 2018, https://doi.org/10.12989/sem.2021.79.1.083