DOI QR코드

DOI QR Code

Nonlinear vibration analysis of an embedded multi-walled carbon nanotube

  • Wu, Chih-Ping (Department of Civil Engineering, National Cheng Kung University) ;
  • Chen, Yan-Hong (Department of Civil Engineering, National Cheng Kung University) ;
  • Hong, Zong-Li (Department of Civil Engineering, National Cheng Kung University) ;
  • Lin, Chia-Hao (Department of Civil Engineering, National Cheng Kung University)
  • 투고 : 2017.01.25
  • 심사 : 2018.06.17
  • 발행 : 2018.06.25

초록

Based on the Reissner mixed variational theorem (RMVT), the authors present a nonlocal Timoshenko beam theory (TBT) for the nonlinear free vibration analysis of multi-walled carbon nanotubes (MWCNT) embedded in an elastic medium. In this formulation, four different edge conditions of the embedded MWCNT are considered, two different models with regard to the van der Waals interaction between each pair of walls constituting the MWCNT are considered, and the interaction between the MWCNT and its surrounding medium is simulated using the Pasternak-type foundation. The motion equations of an individual wall and the associated boundary conditions are derived using Hamilton's principle, in which the von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity is considered. Eringen's nonlocal elasticity theory is used to account for the effects of the small length scale. Variations of the lowest frequency parameters with the maximum modal deflection of the embedded MWCNT are obtained using the differential quadrature method in conjunction with a direct iterative approach.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Science and Technology

참고문헌

  1. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
  2. Ansari, R. and Ramezannezhad, H. (2011), "Nonlocal Timoshenko beam model for the large-amplitude vibrations of embedded multiwalled carbon nanotubes including thermal effects", Physica E, 43(6), 1171-1178. https://doi.org/10.1016/j.physe.2011.01.024
  3. Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlin. Sci. Numer. Simul., 17(4), 1965-1979. https://doi.org/10.1016/j.cnsns.2011.08.043
  4. Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
  5. Behera, L. and Chakraverty, S. (2015), "Application of differential quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Math. Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010
  6. Behera, L. and Chakraverty, S. (2016), "Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review", Arch. Comput. Methods Eng. DOI: 10.1007/s11831-016-9179-y
  7. Bianco, A., Kostarelos, K. and Prato, M. (2005), "Applications of carbon nanotubes in drug delivery", Current Opinion Chem. Biology, 9, 674-679. https://doi.org/10.1016/j.cbpa.2005.10.005
  8. Carrera, E. (2000), "An assessment of mixed and classical theories on global and local responses of multilayered orthotropic plates", Compos. Struct., 50(2), 183-198. https://doi.org/10.1016/S0263-8223(00)00099-4
  9. Carrera, E. (2004), "Assessment of theories for free vibration analysis of homogeneous and multilayered plates", Shock Vib., 11(3-4), 261-270. https://doi.org/10.1155/2004/493584
  10. Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D. and Zhang X.B. (2003), "Tribological application of carbon nanotubes in a metal-based composite coating and composites", Carbon, 41, 215-222. https://doi.org/10.1016/S0008-6223(02)00265-8
  11. Cowper, G. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33(2), 335-340. https://doi.org/10.1115/1.3625046
  12. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I. and Galiotis, C. (2008), "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46, 833-840. https://doi.org/10.1016/j.carbon.2008.02.012
  13. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013), "Carbon nanotubes: present and future commercial applications", Sci., 339, 535-539. https://doi.org/10.1126/science.1222453
  14. Du, H., Lim, M. and Lin, R. (1994), "Application of generalized differential quadrature method to structural problems", Int. J. Numer. Methods Eng., 37(11), 1881-1896. https://doi.org/10.1002/nme.1620371107
  15. Ebrahimi, F. and Barati, M.R. (2016a), "Analytical solution for nonlocal buckling characteristics of higherorder inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
  16. Ebrahimi, F. and Barati, M.R. (2016b), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  17. Ebrahimi, F. and Barati, M.R. (2016c), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451 (18 pages). https://doi.org/10.1007/s00339-016-0001-3
  18. Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239
  19. Ebrahimi, F. and Salari, E. (2015a), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  20. Ebrahimi, F. and Salari, E. (2015b), "Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory", J. Mech. Sci. Technol., 29(9), 3797-3803. https://doi.org/10.1007/s12206-015-0826-2
  21. Ebrahimi, F. and Salari, E. (2015c), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  22. Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524
  23. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  24. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
  25. Ehteshami, H. and Hajabasi, M.A. (2011), "Analytical approaches for vibration analysis of multi-walled carbon nanotubes modeled as multiple nonlocal Euler beams", Physica E, 44(1), 270-285. https://doi.org/10.1016/j.physe.2011.08.023
  26. Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026
  27. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  28. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA.
  29. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  30. Fang, B., Zhen, Y.X., Zhang, C.P. and Tang, Y. (2013), "Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory", Appl. Math. Modell., 37(3), 1096-1107. https://doi.org/10.1016/j.apm.2012.03.032
  31. Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 67, 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031
  32. Harris, P.J.F. (2009), Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, UK.
  33. Hassan, I.H.A.H. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Comput., 127, 1-22.
  34. Hassan, I.H.A.H. (2008a), "Application to differential transformation method for solving systems of differential equations", Appl. Math. Modell., 32, 2552-2559. https://doi.org/10.1016/j.apm.2007.09.025
  35. Hassan, I.H.A.H. (2008b), "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems", Chaos, Solitons Fractals, 36, 53-65. https://doi.org/10.1016/j.chaos.2006.06.040
  36. He, X.Q., Kitipornchai, S. and Liew, K.M. (2005a), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction", J. Mech. Phys. Solids, 53(2), 303-326. https://doi.org/10.1016/j.jmps.2004.08.003
  37. He, X.Q., Kitipornchai, S., Wang, C.M. and Liew, K.M. (2005b), "Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells", Int. J. Solids Struct., 42(23), 6032-6047. https://doi.org/10.1016/j.ijsolstr.2005.03.045
  38. Hsiao, K.T., Alms, J. and Advani, S.G. (2003), "Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites", Nanotechnol., 14, 791-793. https://doi.org/10.1088/0957-4484/14/7/316
  39. Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magnetoelectro-elastic plane beams", Int. J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005
  40. Iijima, S. (1991), "Helica microtubes of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  41. Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded doublewalled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
  42. Khare, R. and Bose, S. (2005), "Carbon nanotube based composites-A review", J. Miner. Mater. Character. Eng., 4(1), 31-46. https://doi.org/10.4236/jmmce.2005.41004
  43. Li, C., Thostenson, E.T. and Chou, T.W. (2008), "Sensors and actuators based on carbon nanotubes and their composites: A review", Compos. Sci. Technol., 68, 1227-1249. https://doi.org/10.1016/j.compscitech.2008.01.006
  44. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
  45. Pour, H.R., Vossough, H., Beygipoor, M.M.H.G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  46. Pradhan, S.C. (2012), "Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory", Finite Elem. Anal. Des., 50, 8-20. https://doi.org/10.1016/j.finel.2011.08.008
  47. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  48. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
  49. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  50. Reissner, E. (1984), "On a certain mixed variational theory and a proposed application", Int. J. Numer. Methods Eng., 20(7), 1366-1368. https://doi.org/10.1002/nme.1620200714
  51. Reissner, E. (1986), "On a mixed variational theorem and on a shear deformable plate theory", Int. J. Numer. Methods Eng., 23(2), 193-198. https://doi.org/10.1002/nme.1620230203
  52. Ru, C.Q. (2000), "Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube", J. Appl. Phys., 87(10), 7227-7231. https://doi.org/10.1063/1.372973
  53. Shakouri, A., Lin, R.M. and Ng, T.Y. (2009), "Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method", J. Appl. Phys., 106(9), 094307. https://doi.org/10.1063/1.3239993
  54. Sladek, J., Sladek, V., Krahulec, S., Chen, C.S. and Young, D.I. (2015), "Analyses of Circular Magnetoelectroelastic plates with functionally graded material properties", Mech. Adv. Mater. Struct., 22(6), 479-489. https://doi.org/10.1080/15376494.2013.807448
  55. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  56. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
  57. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61, 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  58. Vinayan, B.P., Nagar, R., Raman, V., Rajalakshmi, N., Dhathathreyan, K.S. and Ramaprabhu, S. (2012), "Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application", J. Mater. Chem., 22, 9949-9956. https://doi.org/10.1039/c2jm16294f
  59. Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006a), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294(4-5), 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005
  60. Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006b), "Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39(17), 3904-3909. https://doi.org/10.1088/0022-3727/39/17/029
  61. Wu, C.P. and Lai, W.W. (2015a), "Reissner's mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions", Compos. Struct., 122, 390-404. https://doi.org/10.1016/j.compstruct.2014.11.073
  62. Wu, C.P. and Lai, W.W. (2015b), "Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method", Physica E, 68, 8-21. https://doi.org/10.1016/j.physe.2014.12.004
  63. Wu, C.P. and Lee, C.Y. (2001), "Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness", Int. J. Mech. Sci., 43, 1853-1870. https://doi.org/10.1016/S0020-7403(01)00010-8
  64. Wu, C.P. and Tsai, Y.H. (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", Int. J. Eng. Sci., 45(9), 744-769. https://doi.org/10.1016/j.ijengsci.2007.05.002
  65. Wu, C.P., Hong, Z.L. and Wang, Y.M. (2017), "Geometrically nonlinear static analysis of an embedded multiwalled carbon nanotube and van der Waals interaction", J. Nanomech. Micromech.-ASCE, 7, 04017012 (12 pages). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000134
  66. Yalcin, H.S., Arikoglu, A. and Ozkol, I. (2009), "Free vibration analysis of circular plates by differential transformation method", Appl. Math. Comput., 212, 377-386.
  67. Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035

피인용 문헌

  1. Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2018, https://doi.org/10.12989/anr.2021.10.1.001
  2. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157
  3. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.203