References
- Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory", Thin-Wall. Struct., 93, 169-176. https://doi.org/10.1016/j.tws.2015.03.013
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimen. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Dehrouyeh-Semnani, A.M. and Nikkhah-Bahrami, M. (2015), "The influence of size-dependent shear deformation on mechanical behavior of microstructures-dependent beam based on modified couple stress theory", Compos. Struct., 123, 325-336. https://doi.org/10.1016/j.compstruct.2014.12.038
- Doroushi, A., Eslami, M.R. and Komeili, A. (2011), "Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory", J. Intel. Mater. Syst. Struct., 22(3), 231-243. https://doi.org/10.1177/1045389X11398162
- Ebrahimi, F. and Salari, E. (2015a), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Comput. Model. Eng. Sci., 105(2), 151-181
- Ebrahimi, F. and Salari, E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Composite Structures, 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Composite Structures, 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9.
- Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mechanica, 225(6), 1555-1564. https://doi.org/10.1007/s00707-013-1014-z
- Kiani, Y., Rezaei, M., Taheri, S. and Eslami, M.R. (2011), "Thermo-electrical buckling of piezoelectric functionally graded material Timoshenko beams", Int. J. Mech. Mater. Des., 7(3), 185-197. https://doi.org/10.1007/s10999-011-9158-2
- Komijani, M., Kiani, Y., Esfahani, S.E. and Eslami, M.R. (2013), "Vibration of thermo-electrically postbuckled rectangular functionally graded piezoelectric beams", Compos. Struct., 98, 143-152. https://doi.org/10.1016/j.compstruct.2012.10.047
- Lezgy-Nazargah, M. (2015), "A three-dimensional exact state-space solution for cylindrical bending of continuously non-homogenous piezoelectric laminated plates with arbitrary gradient composition", Arch. Mech., 67(1), 25-51.
- Lezgy-Nazargah, M. (2016), "A three-dimensional Peano series solution for the vibration of functionally graded piezoelectric laminates in cylindrical bending", Scientia Iranica A, 23(3), 788-801. https://doi.org/10.24200/sci.2016.2159
- Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2013), "An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams", Compos. Struct., 104, 71-84. https://doi.org/10.1016/j.compstruct.2013.04.010
- Li, L. and Hu, Y. (2017a), "Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory", Compos. Struct., 172, 242-250. https://doi.org/10.1016/j.compstruct.2017.03.097
- Li, L. and Hu, Y. (2017b), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
- Li, Y.S., Feng, W.J. and Cai, Z.Y. (2014), "Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory", Compos. Struct., 115, 41-50. https://doi.org/10.1016/j.compstruct.2014.04.005
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
- Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Sharabiani, P.A. and Yazdi, M.R.H. (2013), "Nonlinear free vibrations of functionally graded nanobeams with surface effects", Compos. Part B: Eng., 45(1), 581-586. https://doi.org/10.1016/j.compositesb.2012.04.064
- Shegokar, N.L. and Lal, A. (2014), "Stochastic finite element nonlinear free vibration analysis of piezoelectric functionally graded materials beam subjected to thermo-piezoelectric loadings with material uncertainties", Meccanica, 49(5), 1039-1068. https://doi.org/10.1007/s11012-013-9852-2
- Shi, Z.F. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever beam under load", Arch. Appl. Mech., 74(3-4), 237-247. https://doi.org/10.1007/s00419-004-0346-5
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
- Su, Z., Jin, G. and Ye, T. (2016), "Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions", Smart Mater. Struct., 25(6), 065003. https://doi.org/10.1088/0964-1726/25/6/065003
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105, 227-239. https://doi.org/10.1016/j.compstruct.2013.05.006
- Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3), 784. https://doi.org/10.1088/0964-1726/16/3/028
- Zhu, X. and Li, L. (2017), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
Cited by
- Instability analysis of bi-axial micro-scanner under electromagnetic actuation including small scale and damping effects vol.26, pp.8, 2020, https://doi.org/10.1007/s00542-020-04802-z