DOI QR코드

DOI QR Code

Deadbeat and Hierarchical Predictive Control with Space-Vector Modulation for Three-Phase Five-Level Nested Neutral Point Piloted Converters

  • Li, Junjie (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University) ;
  • Chang, Xiangyu (School of Russian and Eurasian Studies, Shanghai International Studies University) ;
  • Yang, Dirui (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University) ;
  • Liu, Yunlong (School of Mechanical Electronic and Information Engineering, China University of Mining and Technology) ;
  • Jiang, Jianguo (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Shanghai Jiao Tong University)
  • Received : 2018.05.13
  • Accepted : 2018.08.29
  • Published : 2018.11.20

Abstract

To achieve a fast dynamic response and to solve the multi-objective control problems of the output currents, capacitor voltages and system constraints, this paper proposes a deadbeat and hierarchical predictive control with space-vector modulation (DB-HPC-SVM) for five-level nested neutral point piloted (NNPP) converters. First, deadbeat control (DBC) is adopted to track the reference currents by calculating the deadbeat reference voltage vector (DB-RVV). After that, all of the candidate switching sequences that synthesize the DB-RVV are obtained by using the fast SVM principle. Furthermore, according to the redundancies of the switch combination and switching sequence, a hierarchical model predictive control (MPC) is presented to select the optimal switch combination (OSC) and optimal switching sequence (OSS). The proposed DB-HPC-SVM maintains the advantages of DBC and SVM, such as fast dynamic response, zero steady-state error and fixed switching frequency, and combines the characteristics of MPC, such as multi-objective control and simple inclusion of constraints. Finally, comparative simulation and experimental results of a five-level NNPP converter verify the correctness of the proposed DB-HPC-SVM.

Keywords

References

  1. J. Rodriguez, S. Bernet, B. Wu, J. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2930-2945, Dec. 2007. https://doi.org/10.1109/TIE.2007.907044
  2. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B.Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2553-2580, Aug. 2010. https://doi.org/10.1109/TIE.2010.2049719
  3. K. K. Gupta, A. Ranjan, P. Bhatnagar, L. Sahu, and S. Jain, “Multilevel inverter topologies with reduced device count: A review,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 135-151, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2405012
  4. T. A. Meynard, H. Foch, F. Forest, C. Turpin, F. Richardeau, L. Delmas, G. Gateau, and E. Lefeuvre, “Multicell converters: Derived topologies,” IEEE Trans. Ind. Electron., Vol. 49, No. 5, pp. 978-987, Oct. 2002. https://doi.org/10.1109/TIE.2002.803189
  5. L. Delmas, G. Gateau, T. A. Meynard, and H. Foch, "Stacked multicell converter (SMC): control and natural balancing," in Proc. 33rd Ann. IEEE Power Electron. Spec. Conf., 2002, Vol. 2, pp. 689-694, 2002.
  6. A. M. Y. M. Ghias, J. Pou, and V. G. Agelidis, “On reducing power losses in stack multicell converters with optimal voltage balancing method,” IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 4682-4695, Sep. 2015. https://doi.org/10.1109/TPEL.2014.2364523
  7. A. K. Sadigh, S. H. Hosseini, M. Sabahi, and G. B. Gharehpetian, “Double flying capacitor multicell converter based on modified phase-shifted pulsewidth modulation,” IEEE Trans. Power Electron., Vol. 25, No. 6, pp. 1517-1526, Jun. 2010. https://doi.org/10.1109/TPEL.2009.2039147
  8. A. M. Y. M. Ghias, J. Pou, and V. G. Agelidis, “An active voltage-balancing method based on phase-shifted PWM for stacked multicell converters,” IEEE Trans. Power Electron., Vol. 31, No. 3, pp. 1921-1930, Mar. 2016. https://doi.org/10.1109/TPEL.2015.2439280
  9. J. Li, J. Jiang, and S. Qiao, “A space vector pulse width modulation for five-level nested neutral point piloted converter,” IEEE Trans. Power Electron., Vol. 32, No. 8, pp. 5991-6004, Aug. 2017. https://doi.org/10.1109/TPEL.2016.2618931
  10. J. Li and J. Jiang, “Active capacitor voltage-balancing methods based on the dynamic model for a five-level nested neutral-point piloted converter,” IEEE Trans. Power Electron., Vol. 33, No. 8, pp. 6567-6581, Aug. 2018. https://doi.org/10.1109/TPEL.2017.2755470
  11. A. Jidin, N. R. N. Idris, A. H. M. Yatim, T. Sutikno, and M. E. Elbuluk, “Extending switching frequency for torque ripple reduction utilizing a constant frequency torque controller in DTC of induction motors,” J. Power Electron., Vol. 11, No. 2, pp. 148-155, Mar. 2011. https://doi.org/10.6113/JPE.2011.11.2.148
  12. M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. D. Maeques, “Virtual flux based direct power control of three phase PWM rectifiers,” IEEE Trans. Ind. Appl., Vol. 37, No. 4, pp. 1019-1027, Jul./Aug. 2001. https://doi.org/10.1109/28.936392
  13. Y. A.-R. I. Mohamed and E. F. El-Saadany, “An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltagesource inverter,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 747-759, Apr. 2007. https://doi.org/10.1109/TIE.2007.891767
  14. J. L. Gao, T. Q. Zheng, and F. Lin, “Improved deadbeat current controller with a repetitive-control-based observer for PWM rectifiers,” J. Power Electron., Vol. 11, No. 1, pp. 64-73, Jan. 2011. https://doi.org/10.6113/JPE.2011.11.1.064
  15. W. Song, J. Ma, L. Zhou, and X. Feng, “Deadbeat predictive power control of single-phase three-level neutral-pointclamped converters using space-vector modulation for electric railway traction,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 721-731, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2400924
  16. S. Mariethoz and M. Morari, “Explicit model-predictive control of a PWM inverter with an LCL filter,” IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 389-399, Feb. 2009. https://doi.org/10.1109/TIE.2008.2008793
  17. M. G. Judewicz, S. A. Gonzalez, N. I. Echeverria, J. R. Fischer, and D. O. Carrica, "Generalized predictive current control (gpcc) for grid-tie three-phase inverters," IEEE Trans. Ind. Electron., Vol. 63, No. 7, pp. 4475-4484, Jul. 2016. https://doi.org/10.1109/TIE.2015.2508934
  18. S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, "Model predictive control - A simple and powerful method to control power converters," IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1826-1838, Jun. 2009. https://doi.org/10.1109/TIE.2008.2008349
  19. J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta, H. AbuRub, H. A. Young, and C. A. Rojas, "State of the art of finite control set model predictive control in power electronics," IEEE Trans. Ind. Inform., Vol. 9, No. 2, pp. 1003-1016, May 2013. https://doi.org/10.1109/TII.2012.2221469
  20. S. Vazquez, J. Leon, L. G. Franquelo, J. Rodriguez, H. Young, A. Marquez, and P. Zanchetta, “Model predictive control: A review of its applications in power electronics,” IEEE Ind. Electron. Mag., Vol. 8, No. 1, pp. 16-31, Mar. 2014. https://doi.org/10.1109/MIE.2013.2290138
  21. S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Ind. Electron., Vol. 64, No. 2, pp. 935-947, Feb. 2017. https://doi.org/10.1109/TIE.2016.2625238
  22. P. Lezana, R. Aguilera, and D. Quevedo, “Model predictive control of an asymmetric flying capacitor converter,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 1839-1846, Jun. 2009. https://doi.org/10.1109/TIE.2008.2007545
  23. M. Vatani, B. Bahrani, M. Saeedifard, and M. Hovd, “Indirect finite control set model predictive control of modular multilevel converters,” IEEE Trans. Smart Grid, Vol. 6, No. 3, pp. 1520-1529, May 2015. https://doi.org/10.1109/TSG.2014.2377112
  24. A. Dekka, B. Wu, V. Yaramasu, and N. R. Zargari, “Dual-stage model predictive control with improved harmonic performance for modular multilevel converter,” IEEE Trans. Ind. Electron., Vol. 63, No. 10, pp. 6010-6019, Oct. 2016. https://doi.org/10.1109/TIE.2016.2571259
  25. C. Garcia, S. Kouro, T. Meynard, M. Norambuena, and J. Rodriguez, "Finite control set model predictive control of a stacked multicell converter," in Proc. 41st Annu. Conf. IEEE Ind. Electron. Soc. (IECON'15), pp. 1164-1169, Nov. 2015.
  26. M. Norambuena, S. Dieckerhoff, S. Kouro, and J. Rodriguez, "Finite control set model predictive control of a stacked multicell converter with reduced computational cost," in Proc. 41st Annu. Conf. IEEE Ind. Electron. Soc. (IECON'15), pp. 1819-1824, Nov. 2015.
  27. J. Li, D. Zhang, and J. Jiang, "Fast finite control set model predictive control for three-phase five-level nested neutral point piloted converter," in Proc. 43st Annu. Conf. IEEE Ind. Electron. Soc. (IECON'17), pp. 1140-1145, Oct. 2017.
  28. W. Song, Z. Deng, S. Wang, and X. Feng, “A simple model predictive power control strategy for single-phase PWM converters with modulation function optimization,” IEEE Trans. Power Electron., Vol. 31, No. 7, pp. 5279-5289, Jul. 2016. https://doi.org/10.1109/TPEL.2015.2481323
  29. J. Hu and Z. Q. Zhu, “Improved voltage-vector sequences on dead-beat predictive direct power control of reversible three-phase grid-connected voltage-source converters,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 254-267, Jan. 2013. https://doi.org/10.1109/TPEL.2012.2194512
  30. Y. Zhang and H. Yang, “Two-vector-based model predictive torque control without weighting factors for induction motor drives,” IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1381-1390, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2416207
  31. Z. Song, Y. Tian, W. Chen, Z. Zou, and Z. Chen, “Predictive duty cycle control of three-phase active-front-end rectifiers,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 698-710, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2398872
  32. M. H. Vafaie, B. Mirzaeian Dehkordi, P.Moallem, and A. Kiyoumarsi, "Improving the steady-state and transient-state performances of PMSM through an advanced deadbeat direct torque and flux control system," IEEE Trans. Power Electron., Vol. 32, No. 4, pp. 2964-2975, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2577591
  33. A. D. Alexandrou, N. K. Adamopoulos, and A. G. Kladas, “Development of a constant switching frequency deadbeat predictive control technique for field oriented synchronous permanent magnet motor drive,” IEEE Trans. Ind. Electron., Vol. 63, No. 8, pp. 5167-5175, Aug. 2016. https://doi.org/10.1109/TIE.2016.2559419
  34. T. Geyer, R. P. Aguilera, and D. E. Quevedo, "On the stability and robustness of model predictive direct current control," in IEEE International Conference on Industrial Technology, (ICIT 2013), pp. 374-379, Feb. 2013.