DOI QR코드

DOI QR Code

SHADOWABLE POINTS FOR FINITELY GENERATED GROUP ACTIONS

  • Kim, Sang Jin (Department of Mathematics Chungnam National University) ;
  • Lee, Keonhee (Department of Mathematics Chungnam University)
  • Received : 2018.10.01
  • Accepted : 2018.10.04
  • Published : 2018.11.15

Abstract

In this paper we introduce the notion of shadowable points for finitely generated group actions on compact metric spaace and prove that the set of shadowable points is invariant and Borel set and if chain recurrent set contained shadowable point set then it coincide with nonwandering set. Moreover an action $T{\in}Act(G, X)$ has the shadowing property if and only if every point is shadowable.

Keywords

References

  1. N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc. 146 (2018), 1047-1057.
  2. N. Kawaguchi, Quantative shadowable points, Dyn. Syst. 32 (2017), 504-518. https://doi.org/10.1080/14689367.2017.1280664
  3. C. A. Morales, Shadowable points, Dyn. Syst. 31 (2016), 347-356. https://doi.org/10.1080/14689367.2015.1131813
  4. P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst. 20 (2008), 1039-1056. https://doi.org/10.3934/dcds.2008.20.1039
  5. A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst. 29 (2014), 337-351. https://doi.org/10.1080/14689367.2014.902037
  6. S. Y. Pilyugin, Inverse shadowing in group action, Dyn. Syst. 32 (2017), 198-210. https://doi.org/10.1080/14689367.2016.1173651
  7. S. Y. Pilyugin, Shadowing in actions of some abelian groups, Fund. Math. 179 (2003), 83-96. https://doi.org/10.4064/fm179-1-7