DOI QR코드

DOI QR Code

Dispersion-managed Optical Transmission Links with the Random Distributed SMF Lengths

SMF 길이가 랜덤하게 분포하는 분산 제어 광전송 링크

  • Received : 2018.10.05
  • Accepted : 2018.10.22
  • Published : 2018.10.31

Abstract

Optical phase conjugation combining with dispersion management (DM) is promising technique to compensate for signal distortion due to chromatic dispersion and nonlinear Kerr effects of single mode fiber (SMF) in optical communication systems. However the fixed SMF length in every fiber spans usually used in the optical links with optical phase conjugator(OPC) and DM restricts the flexible link configuration. The goal of this paper is to investigate the possibility of the flexible configurations of the ultra-high and long-haul optical transmission systems by using the random distribution of SMF length of each fiber spans consisted of the optical link. It is confirmed that the excellent compensation for the distorted wavelength division multiplexing signals in the optical links with the randomly distribution is obtained in case of the shorter averaged SMF length over all fiber spans. It is also confirmed that the control method of net residual dispersion suitable to good compensation is postcompensation and the extent of net residual dispersion(NRD) is -10 ps/nm in DM optical link consisted of fiber spans with the randomly distributed SMF lengths.

광 위상 공액과 분산 제어 (DM; dispersion management)를 결합한 기술은 단일 모드 광섬유 (SMF; single mode fiber)의 색 분산과 비선형 Kerr 효과에 의한 광 신호 왜곡을 보상하는 대표적인 기술이다. 하지만 일반적으로 사용되는 고정된 각 중계 구간의 SMF 길이는 광전송 링크의 유연한 구성을 방해한다. 본 연구의 목적은 DM 광전송 링크를 구성하는 모든 중계 구간의 SMF 길이의 랜덤 분포를 통한 초고속 장거리 광전송 시스템의 유연한 구성 가능성을 살펴보는 것이다. 랜덤 분포에 의해 평균적으로 갖게 되는 SMF 길이가 짧을수록 파장 분할 다중 (WDM; wavelength division multiplexing) 신호 왜곡 보상에 효과적인 것을 확인하였다. 또한 각 중계 구간의 SMF 길이를 랜덤하게 분포시키는 DM 링크에서 우수한 보상을 위한 전체 잉여 분산의 조절은 postcompensation이 적합하고, 그 전체 잉여 분산(NRD; net residual dispersion) 크기는 -10 ps/nm인 것을 확인하였다.

Keywords

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. New York, NY: Wiley, 2002.
  2. A. Farbert, C. Scheerer, J.-P. Elbers, C. Glingener, and G. Fischer, "Optimized dispersion management scheme for long-haul optical communication systems," Electron. Lett., vol. 35, no. 21, pp. 1865-1866, Oct. 1999. https://doi.org/10.1049/el:19991237
  3. X. Xiao, S. Gao, Y. Tian, and C. Yang, “Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems,” Journal of Lightwave Technology., Vol. 24, No. 5, pp. 2038-2044, May 2006. https://doi.org/10.1109/JLT.2006.872278
  4. M. Suzuki and N. Edagawa, "Dispersion-managed high-capacity ultra-long-haul transmission," Journal of Lightwave Technology, Vol. 21, No. 4, pp. 916 -929. 2003. https://doi.org/10.1109/JLT.2003.810098
  5. A. Yariv, D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation", OpticsLetters,Vol. 4, pp. 52-54, 1979.
  6. A. Chowdhury and R.-J.Essiambre, "Optical phase conjugation and pseudolinear transmission", Opt. Lett., Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  7. A. Chowdhury and R.-J.Essiambre, "Optical phase conjugation and pseudolinear transmission", Optics Letter, Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  8. P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Optical Express, Vol. 13, No. 21, pp. 8460-8468, 2005. https://doi.org/10.1364/OPEX.13.008460
  9. J. P. Chung and S. R. Lee, “Pseudo-symmetric link configuration in dispersion-managed WDM transmission system with optical phase conjugator,” Information, Vol. 17, No. 11B, pp. 5963-5968, Nov. 2014.
  10. S. R. Lee, “Dispersion managed optical transmission links with an artificial distribution of the SMF length and residual dispersion per span,” Journal of Information and Communication Convergence Engineering (JICCE), Vol. 12, No. 2, pp. 75-82, June 2014. https://doi.org/10.6109/jicce.2014.12.2.075