DOI QR코드

DOI QR Code

Numerical Studies on the Control Performance of Fiber Orientation for Nozzle with Inside Blades

타설 노즐의 내부 블레이드에 의한 섬유 방향성 제어 성능에 관한 수치 해석적 연구

  • 이종한 (대구대학교 건설시스템공학과)
  • Received : 2018.10.01
  • Accepted : 2018.10.12
  • Published : 2018.11.01

Abstract

This study is aimed at controlling the fiber orientation and improve the fiber distribution in fiber-reinforced cement composites using blades that can be placed inside the existing nozzles. To optimize the blade parameters, multi-physics finite element analysis was performed that could account for the flow of the cementitious matrix material, the movement of the entrained fibers, and the interactions with the nozzle. As a result, this study defined the blade distance, length, and position as a function of the fiber length to be used in the field. The blades with a distance from 1.2 to 2.4 times the fiber length and length from 4 to 8 times the fiber length, as well as located at below 14 times the fzfiber length from the nozzle exit maintained the fiber orientation angle less than $5^{\circ}$. In addition, the blade-type nozzle proposed in the study can be attachable and detachable to the conventional casting equipment, and thus it can provide the usability and convenience in practical applications.

본 연구는 기존에 사용되어 지고 있는 타설 노즐 내부에 블레이드를 설치함으로써 타설 시 시멘트 복합체에 혼입된 섬유의 방향성을 제어하고 동시에 분포도를 향상시키고자 하였다. 블레이드 변수 최적화를 위하여 시멘트계 매트릭스 재료의 유동과 혼입된 섬유의 운동, 노즐간의 상호작용을 고려한 다중물리계 유한요소해석을 수행하였다. 사용되는 섬유길이를 변수로 하여 블레이드의 간격, 길이, 위치를 결정하였다. 내부 블레이드 간격이 섬유길이의 약 1.2~2.4배, 블레이드 길이는 섬유길이의 약 4~8배, 설치 위치는 시멘트 복합체가 도출되는 입구에서부터 섬유길이의 14배 이하일 때 섬유 방향각이 약 $15^{\circ}$이하로 제어되었다. 또한, 본 연구에서 제시된 블레이드형 노즐은 기존의 섬유보강 시멘트 복합체 타설장비와 타설관을 그대로 사용하면서, 탈 부착식으로 제작될 수 있어 사용성과 편의성을 동시에 제공할 수 있을 것으로 판단된다.

Keywords

References

  1. Azad, A., Lee, J.J., Lee, J.H., Lee, K.J., and An, Y.K. (2018), Numerical investigation of the density and inlet velocity effects on fiber orientation inside fresh SFRSCC, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(3), 16-20. https://doi.org/10.11112/JKSMI.2018.22.3.016
  2. Boulekbache. B., Hamrat, M., Chemrouk, M., and Amziane, S. (2010), Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material, Construction and Building Materials, 24, 1664-1671. https://doi.org/10.1016/j.conbuildmat.2010.02.025
  3. Cao, Y.Y.Y. and Yu, Q.L.(2008) Effect of inclination angle on hooked end steel fiber pullout behavior in ultra-high performance concrete, Composite Structures, 201, 151-160.
  4. Ellis, B.D., McDowell, D.L,, and Zhou, M. (2014), Simulation of single fiber pullout response with account of fiber morphology, Cement Concrete Composite, 48, 42-52. https://doi.org/10.1016/j.cemconcomp.2014.01.003
  5. Ferrara, L., Cremonesi, M., Tregger, N., Frangi, A., and Shah, S.P. (2012), On the identification of rheological properties of cement suspensions: rheometry, computational fluid dynamics modeling and field test measurements, Cement and Concrete Research, 42, 1134-1146. https://doi.org/10.1016/j.cemconres.2012.05.007
  6. Ferrara, L., Ozyurt, N., and di Prisco, M. (2011) High mechanical performance of fiber reinforced cementitious composites: the role of "Casting-flow Induced" fiber orientation, Materials and Structures, 44, 109-128. https://doi.org/10.1617/s11527-010-9613-9
  7. Kang, S.T., Lee, B. Y., Koh, K. T. (2013), Prediction of fiber dispersion and orientation in fiber-reinforced cementitious composites, Magazine of the Korea Concrete Institute, 25(3), 39-42. https://doi.org/10.22636/MKCI.2013.25.3.39
  8. Lee, J.H. (2017), Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete, Composite Structures, 168, 216-25 https://doi.org/10.1016/j.compstruct.2017.01.052
  9. Lee, J.H., Cho, B.S., and Cho, C.O. (2016), Design of Ground Floor Slab According to the Method for Evaluating the Tensile Performance of Steel Fiber Reinforced Concrete, Journal of the Korea Concrete Institute, 28(1), 95-104. https://doi.org/10.4334/JKCI.2016.28.1.095
  10. Lee, J.H., Cho, B.S., and Choi, E. (2017), Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content, Construction and Building Materials, 138, 222-2231. https://doi.org/10.1016/j.conbuildmat.2017.01.096
  11. Roussel, N., Staquet, S., Schwarzentruber, L.D., Roy, R.L., and Toutlemonde, F. (2007), SCC casting prediction for the realization of prototype VHPC-precambered composite beams, Materials and Structures, 40, 877-887. https://doi.org/10.1617/s11527-006-9190-0
  12. Soufeiani, L., Raman, S.N., Jumaat, M.Z.B., Alengaram, U.J., Ghadyani, G., and Mendis, P. (2016), Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading - a review, Engineering Structures, 124(1), 405-417. https://doi.org/10.1016/j.engstruct.2016.06.029
  13. Wang, Z.L., Wu, J., and Wang, J.G. (2010), Experimental and numerical analyses on effect of fiber aspect ratio on mechanical properties of SRFC, Construction and Building Materials, 24(4), 559-565. https://doi.org/10.1016/j.conbuildmat.2009.09.009