DOI QR코드

DOI QR Code

Physical Properties of Self-healing Concrete Mixed with Hydrogel Carrier of Microorganism

미생물 혼입 하이드로젤 지지체 첨가에 따른 자기치유 콘크리트의 물성 변화

  • 추인엽 (한국전력공사 전력연구원) ;
  • 우진호 (한국전력공사 전력연구원) ;
  • 우상균 (한국전력공사 전력연구원) ;
  • 이병재 (대전대학교 토목공학과)
  • Received : 2018.06.27
  • Accepted : 2018.10.29
  • Published : 2018.11.01

Abstract

The properties of concrete with addition of microgel - containing hydrogel support were investigated. As a result of measuring the slump of the self - healing concrete, the target slump was satisfied in all the mixing conditions, but the slump was decreased as the mixing amount of the hydrogel support increased. The change of porosity due to incorporation of hydrogel support was minimal. As a result of the evaluation of the compressive strength of the self - healing concrete, the incorporation of the hydrogel support did not affect the strength. However, under the same mixing condition, the dispersion value of the specimens tended to increase with increasing hydrogel support contents. As a result of the permeability test of self-healing concrete according to the incorporation of hydrogel support, it was confirmed that the mixing ratio of hydrogel support was effective to decrease the permeability coefficient.

콘크리트 자기치유를 목적으로 미생물 혼입 하이드로젤 지지체 첨가에 따른 콘크리트의 특성을 검토하였다. 자기치유 콘크리트의 슬럼프 측정결과, 모든 배합조건에서 목표슬럼프를 만족하였으나, 하이드로젤 지지체의 혼입량 증가에 따라 슬럼프 감소가 있었다. 하이드로젤 지지체 혼입에 따른 공극률의 변화는 미미하였다. 자기치유 콘크리트의 압축강도 평가결과, 하이드로젤 지지체의 혼입은 강도에 영향을 미치지 않았다. 하지만 동일 배합조건하에서 시험체간의 분산값이 하이드로젤 지지체 혼입량 증가에 따라 증가하는 경향을 나타내었다. 하이드로젤 지지체의 혼입에 따른 자기치유 콘크리트의 투수시험 결과, HC-B1.5 배합의 경우 최대 45.6%의 투수계수 회복율을 나타내어 하이드로젤 지지체의 혼입이 투수계수 감소에 효과가 높은 것으로 확인되었다.

Keywords

References

  1. Hyun Jung Kim, and Woojun Park (2016). Current Research Topics in Development of Self-healing Concrete Using Microorganisms, Magazine of the Korea Concrete Institute, 28(3), 30-34.
  2. Al-Salloum, Y., Hadi, S., Abbas, H., Almusallam, T., and Moslem, M. A. (2017). Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation - A review, Construction and Building Materials, 154, 857-876. https://doi.org/10.1016/j.conbuildmat.2017.07.203
  3. Wha-Jung Kim, Sung-Tae Kim, Sung-Jin Park, Sa-Youl Ghim, and Woo-Young Chun (2009). A Study on the Development of Self-Healing Smart Concrete Using Microbial Biomineralization, Journal of the Korea Concrete Institute, 21(4), 501-511. https://doi.org/10.4334/JKCI.2009.21.4.501
  4. Lee, Jun-Cheol, Kim, Wha-Jung, Chun, Woo-Yong, and Lee, Chang-Joon (2013). The Effect of Microorganisms on Compressive Strength of Cement Paste, JOURNAL OF THE ARCHITECTURAL INSTITUTE OF KOREA Structure & Construction, 29(7), 65-72. https://doi.org/10.5659/JAIK_SC.2013.29.7.65
  5. Kong, L., Zhang, B., and Fang, J. (2017). Study on the applicability of bactericides to prevent concrete microbial corrosion, Construction and Building Materials, 149, 1-8. https://doi.org/10.1016/j.conbuildmat.2017.05.108
  6. Kim, Ha Yeon, Son, Hyeong Min, Park, Sol Moi, and Lee, Haeng Ki (2017). Overview of the effect of microbiological calcium carbonate precipitation(MCCP) on co-culture of urea degrading and non-urea degrading bacteria, Proceedings of the Korea Concrete Institute, 29(2), 245-246.
  7. Grengg, C., Mittermayr, F., Ukrainczyk, N., Koraimann, G., Kienesberger, S., and Dietzel, M. (2018). Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water research.