DOI QR코드

DOI QR Code

Sample size using response rate on repeated surveys

계속조사에서 응답률을 반영한 표본크기

  • Park, Hyeonah (Department of Information and Statistics, Yonsei University) ;
  • Na, Seongryong (Department of Information and Statistics, Yonsei University)
  • 박현아 (연세대학교 정보통계학과) ;
  • 나성룡 (연세대학교 정보통계학과)
  • Received : 2018.05.31
  • Accepted : 2018.07.16
  • Published : 2018.10.31

Abstract

Procedures, such as sampling technique, survey method, and questionnaire preparation, are required in order to obtain sample data in accordance with the purpose of a survey. An important procedure is the decision of the sample size formula. The sample size formula is determined by setting the target error and total cost according to the sampling method. In this paper, we propose a sample size formula using population changes over time, estimation error of the previous time and response rate of past data when the target error and the expected response rate are given in the simple random sampling. In actual research, we use estimators that apply complex weights in addition to design-based weights. Therefore, we induce a sample size formula for estimators using design-based weights and nonresponse adjustment coefficients, that can be a formula that reflects differences in response rates when survey methods are changed over time. In addition, we use simulations to compare the proposed formula with the existing sample size formula.

조사목적에 부합하는 표본 자료를 얻기 위해서는 추출방법 및 조사방법 결정, 설문지 작성 등의 절차가 필요하며 중요한 결정 중 하나가 표본크기 공식의 적용이다. 표본크기 공식은 추출방법에 따른 목표오차와 총비용 등을 설정함으로써 결정되는데 본 논문에서는 단순임의추출에서 목표오차와 예상 응답률이 주어져 있을 때 과거 및 현재 시점의 모집단의 변동과 과거 자료의 추정오차 및 응답률을 사용한 표본크기 공식을 제안한다. 실제조사에서는 설계가중치 외에도 여러 가중치가 복합적으로 적용되는 추정량을 사용하고 있는데 본 논문에서는 설계가중치와 무응답 보정계수를 사용한 추정량에서의 표본크기 공식을 유도하며 이것은 시점별 조사방법이 달라질 경우 응답률에 차이가 발생하는 현상을 반영한 공식이 될 수 있다. 또한 모의 실험을 통하여 기존의 표본크기 공식과 비교함으로써 제안된 공식의 다양한 적용방안을 살펴본다.

Keywords

References

  1. Han, G. S. and Lee, G. S. (2015). A note on the decision of sample size by relative standard error in successive occasions, The Korean Journal of Applied Statistics, 28, 477-483. https://doi.org/10.5351/KJAS.2015.28.3.477
  2. Kim, J. K. and Kim, J. J. (2007). Nonresponse weighting adjustment using estimated response probability, The Canadian Journal of Statistics, 35, 501-514. https://doi.org/10.1002/cjs.5550350403
  3. Kim, K. S. (2012). Sample size determination in repeated surveys with varying population sizes, Survey Research, 13, 159-174.
  4. Lee, I. and Park, M. (2015). A study on sample allocation for stratified sampling, The Korean Journal of Applied Statistics, 28, 1047-1061. https://doi.org/10.5351/KJAS.2015.28.6.1047
  5. Park, H. and Na, S. (2014). Decision of sample size on successive occasions, The Korean Journal of Applied Statistics, 27, 513-521. https://doi.org/10.5351/KJAS.2014.27.4.513
  6. Park, H. N. (1989). Statistical Survey (2nd ed), Youngji Publishers, Seoul.
  7. Sung, N. (2012). Methodology of Sample Survey, Freedom Academy, Gyeonggi.
  8. Yoo, Y. and Shin, K. I. (2011). A study on the decision of sample size for panel survey design, The Korean Journal of Applied Statistics, 24, 25-34. https://doi.org/10.5351/KJAS.2011.24.1.025