
Journal of Internet Computing and Services(JICS) 2018. Oct.: 19(5): 107-113 107

Development of Performance Evaluation Metrics
of Concurrency Control in Object-Oriented

Database Systems
☆

Woochun Jun1 Suk-Ki Hong2*

ABSTRACT

Object-oriented databases (OODBs) canbe used for many non-traditional database application areas such as computer-aided

design, etc. Usually those application areas require advanced modeling power for expressing complicated relationships among data

sets. OODBs have more distinguished features than the traditional relational database systems. One of the distinguished characteristics

of OODBs is class hierarchy (also called inheritance hierarchy). A class hierarchy in an OODB means that a class can hand down the

definitions of the class to the subclass of the class. In other words, a class is allowed to inherit the definitions of the class from the

superclass. In this paper, we present performance evaluation metrics for class hierarchy in OODBs from a concurrency control

perspective. The proposed performance metrics are developed to determine which concurrency control scheme in OODBs can be

used for a given class hierarchy. In this study, in order to develop performance metrics, we use class hierarchy structure (both of single

inheritance and multiple inheritance), and data access frequency for each class. The proposed performance metrics will be also used

to compare performance evaluation for various concurrency control techniques.

☞ keyword : Object-oriented Database, Concurrency Control, Performance Evaluation Metrics, Class Hierarchy, Class Composition

Hierarchy

1. Introduction

OODBs were adopted in advanced database areas like

CAD (Computer-Aided Design), CASE (Computer-Aided

Software Engineering), and so on. For those advanced

database applications, the traditional relational database

systems are not sufficient for modeling those advanced

applications. This is because the relationships among various

entities are too complicated to express in table format in a

relational database system.

An OODB can provide complex modeling power. To put

it concretely, a typical OODB can provide two advanced

relationships. The first relationship is class hierarchy. Class

hierarchy is also called IS-A hierarchy in which a class

1 Dept. of Computer Education, Seoul National University of Education,
Seoul, 06639, Korea

2 Dept. of Business Administration, Dankook University, Yongin,
16890, Korea

* Corresponding author(skhong017@dankook.ac.kr)
[Received 20 October2017, Reviewed 6 November 2017(R2 14
March 2018, R3 25 April 2018), Accepted 15 May 2018]
☆ This paper is an extended version of the paper presented and

published in APIC-IST 2017 conference.

object is made up of the groups of instance objects and class

definition objects. Class hierarchy is concerned with

inheritance among objects. That is, a subclass of a class, say

A, inherits definitions of the class A. The second

relationship in OODB is IS-PART-OF hierarchy,also called

composite object hierarchy. In a composite object hierarchy,

for example, in Figure 1, a submarine object has country,

year and weight as composite objects.

In OODBs, a transaction is usually composed of a set of

methods that are used to retrieve and change values of an

object [1]. Usually, in a database system, there are many

concurrently running transactions. These concurrently

running transactions may violate database consistency. For

this reason, database concurrency control technique is

required to maintain consistency among transactions at any

time. However, while a concurrency control technique is

maintaining consistency, it may incur various overhead on

database. This overhead may degrade overall database

performance. Especially a transaction in an OODB is usually

long-lived so that database performance may be degraded,

resulting overall transaction response time damaged.

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2018 KSII

http://dx.doi.org/10.7472/jksii.2018.19.5.107

Development of Performance Evaluation Metrics of Concurrency Control in Object-Oriented Database Systems

108 2018. 10

(Fig. 1) IS-PART-OF hierarchy

Inheritance is a key concept in OODBs. Two types of

accesses for class hierarchy are MCR (Many-Class Retrieve)

and OCR (One-Class Retrieve) [2]. MCR is the type of

access request to possibly more than one class. Examples of

MCR include class definition update and a query (Instance

accesses to all or some instances of a given class and its

subclasses). On the other hand, SCR is a type of access

request to only one class. Possible SCRs include the class

object retrieve, and the instance object access to only one

class.

In this paper, we provided performance evaluation metrics

concurrency control techniques for class hierarchy in

OODBs. The proposed evaluation metrics can be used to

determine what kind of concurrency control technique is

used for a given class hierarchy. The typical performance

evaluation metrics of a database concurrency control scheme

are response time and locking overhead [3,4]. The proposed

performance evaluation metrics are based on structural

information and data access frequency for each class in class

hierarchy. Further, we provided evaluation metrics for both

of multiple inheritances and single inheritance. In Section 2,

we discuss relatedworks on the existing concurrency control

techniques. In Section 3, we developed the performance

evaluation metrics for concurrency control schemes dealing

with class hierarchy. Finally, in Section 4, we present

conclusions and further research issues.

2. Related Works

2.1 Single Inheritance

According to the previous works, there are two

representative locking-based works for a class hierarchy:

explicit locking [1,5] and implicit locking [4,6,7,8],

respectively.

In implicit locking, locking on a class, say A, causes

intention locks on all superclasses of the class A. It means

that every superclass of A needs an intention lock. An

intention lock on a class, say A, indicates that there is an

actual lock on some subclass of A. An intention lock is used

to detect possible conflict in advance.

In explicit locking, for an MCR access on a class C, a

lock is required on the class C as well as each subclass of

C. In the meanwhile, for an SCR request, a lock is required

on only the class C. Therefore, for an MCR request, if a

transaction retrieves a class in the bottom of a class

hierarchy, the transaction will need less number of locks

than the transactions retrieving a class in the top of class

hierarchy. Moreover, explicit locking can do exactly the

same way for both single inheritance and multiple

inheritances. But, explicit locking needs more number of

locks for transactions retrieving a class in the top of a class

hierarchy.

2.2 Multiple Inheritance

Explicit locking gets locks exactly same as single

inheritance. It means that explicit locking scheme does not

have to take any different actions for multiple inheritances.

However, in implicit locking, for the MCR access to a

class C. locks are needed for both the class C and all

subclasses of C that have more than one superclass [2,6].

For instance, take a look at the following class hierarchy

with multiple inheritances as shown in Figure 2. In figure 2,

the lock modes are applied on an Orion OODB [6]. In this

class hierarchy, in order to change the class definition, for

instance F, the explicit locking scheme does as shown in

Figure 2. The W (Write) locks are needed for all subclasses

of F as well as the class F. Meanwhile, in the implicit

locking scheme, intention locks IWs corresponding to W

locks are needed for each superclass of F and also F.

Among two paths from F to the root class A, A-C-F and

A-D-F, assume that path A-C-F is selected. In addition, class

I is also locked are locked since the class I has more than

one superclass. Figure 3 shows locks by the implicit locking

scheme.

Development of Performance Evaluation Metrics of Concurrency Control in Object-Oriented Database Systems

한국 인터넷 정보학회 (19권5호) 109

A

B C D

GFE

H I

J K

L M

W

W

W W

W W
(Fig. 2) Locks by explicit locking

IW

W

IW

W

A

B C D

GFE

H I

J K

L M

(Fig. 3) Locks by implicit locking

3. Development of Performance

Evaluation

In this section we provide performance evaluation metrics

for concurrency control schemes dealing with class

hierarchy. For given class hierarchy, the proposed metrics

represents possible lock requirement. The proposed metrics

can be used to check if a concurrency control scheme can

incur less locking overhead for a given class hierarchy. In

other words, for a given class hierarchy, those metrics are

used to determine what kind of concurrency control schemes

dealing with class hierarchy is used.

3.1 Single Inheritance

Depending on whether a concurrency control is based on

implicit locking or explicit locking, the number of locks

required for an access to a class C may require locks on

subclasses of C and/or locks on superclasses of C.

In implicit locking, locking on C means that locks are

also required on each superclass of C as well. That is,

intention locks are required on each superclass of C. On the

other hand, in explicit locking, locking on C means that

locks are also required on each subclass of C depending on

lock request types. For class definition read for instance read

on class C, locks on each subclass of C are not required.

However, for class definition change and query on class C,

locks on each subclass of C are necessary.

We developed two performance metrics for class

hierarchywith single inheritance. First of all, we assume that

data access frequency on each class in a given class

hierarchy is known in advance.

Assuming that data access frequency for a class C is

represented as FC, all locks required for a given class C,

LOCKS_ON_SUPERCLASSC = F1 + F2 + F3 +,,,,,,,,, FC-1

Where LOCKS_ON_SUPERCLASC is all intention locks

required for a given class C, and also 1,2,,,,C-1 are all of

superclasses of C.

On the other hand, for explicit locking, all locks required

for a given class C can be calculated as follows.

LOCKS_ON_SUBCLASSC = PC-MCR *(FC+1 +,,,,,,, +FN-1 + FN)

Where LOCKS_ON_SUBCLASSC is all locks required

for C+1, C+2….N-1, N that are all subclasses of C. PC-MCR

is a probability that a class C is accessed by MCR access

Development of Performance Evaluation Metrics of Concurrency Control in Object-Oriented Database Systems

110 2018. 10

type. PC-SCR is a probability that a class C is accessed by

SCR access type.

PC-SCR + PC-MCR = 1

For example, consider the following class hierarchy in

Figure 4 and data access frequency for each class is given

as in Table 1.

C1

C2

C3

C4

C5

(Fig. 4) A Class Hierarchy

(Table 1) Data Access Frequency and Probability of

MCR /SCR

Class Data Access Frequency Prob. Of MCR/SCR

C1 50 0.3/0.7

C2 40 0.2/0.8

C3 10 0.1/0.9

C4 20 0.1/0.9

Based ondata access frequency on each class and

probability of MCR, LOCKS_ON_SUPERCLASS of each

class can be calculated as follows.

LOCKS_ON_SUPERCLASSC1 = 0

LOCKS_ON_SUPERCLASSC2 = 40

LOCKS_ON_SUPERCLASSC3 = 20

LOCKS_ON_SUPERCLASSC4 = 60

LOCKS_ON_SUPERCLASSC5 = 80

On the other hand, LOCKS_ON_SUBCLASS of each

class can be calculated as follows.

LOCKS_ON_SUBCLASSC1 = 0.3 * 50 * 4 = 60

LOCKS_ON_SUBCLASSC2 = 0.2 * 40 * 3 = 24

LOCKS_ON_SUBCLASSC3 = 0.1 * 10 * 2 = 2

LOCKS_ON_SUBCLASSC4 = 0.1 * 20 * 1 = 2

LOCKS_ON_SUBCLASSC5 = 0

For class C1, locks on subclasses are required for only an

MCR access. Thus, LOCKS_ON_SUBCLASSC1 is calculated

as follows.

LOCKS_ON_SUBCLASSC1 =

 0.3 * 50 (locks for C2)

+ 0.3*50(locks for C3)

+ 0.3*50(locks for C4)

+ 0.3*50(locks for C5)

= 60

Likewise, LOCKS_ON_SUBCLASSC2, LOCKS_ON_ SUBCLASSC3,

LOCKS_ON_SUBCLASSC4 can be calculated in the same

way. For class C5, LOCKS_ON_SUBCLASSC5 = 0 since the

class C5 is a leaf class.

Finally, we develop LOCKS_ON_ SUPERCLASS and

LOCKS_ON_SUBCLASS as follows.

LOCKS_ON_SUPERCLASS =

LOCKS_ON_SUPERCLASS1

+ LOCKS_ON_SUPERCLASS2

+

 ,,,,,,,,

+LOCKS_ON_SUPERCLASSN-1

+LOCKS_ON_SUPERCLASSN

LOCKS_ON_SUBCLASS = LOCKS_ON_SUBCLASS1+

LOCKS_ON_SUBCLASS2

+

,,,,,,,,

+LOCKS_ON_SUBCLASSN-1

+LOCKS_ON_SUBCLASSN

That is, LOCKS_ON_SUPERCLASS and LOCKS_ON_

SUBCLASS represent total locks required for intention locks

(for implicit locking) and subclass locking (for explicit

Development of Performance Evaluation Metrics of Concurrency Control in Object-Oriented Database Systems

한국 인터넷 정보학회 (19권5호) 111

locking), respectively. Using a class hierarchy in Figure 4

and data access frequency in Table 1, LOCKS_ON_

SUPERCLASS and LOCKS_ON_SUBCLASS are calculated

as follows.

LOCKS_ON_SUPERCLASS = 0 + 40 + 20 + 60 + 80 = 200

LOCKS_ON_SUBCLASS = 60 + 24 + 2 + 2 + 0 = 88

In this example, since LOCKS_ON_ SUPERCLASS >

LOCKS_ON _SUBCLASS, it is better to use explicit

locking rather than implicit locking. Two performance

evaluation metrics, LOCKS_ON_SUPERCLASS and

LOCKS_ON_SUBCLASS are used to determine which

concurrency control schemes, implicit locking and explicit

locking, is better to reduce locking overhead for a given

class hierarchy.

3.2 Multiple Inheritance

As discussed earlier, for multiple inheritance, explicit

locking works exactly same as single inheritance. However,

in implicit locking, for an MCR lock in class C, all

subclasses of C that have more than one superclass need to

be also locked. Thus, for implicit locking, LOCKS_ON_

SUBCLASSC (Implicit) is defined as follows.

LOCKS_ON_SUBCLASSC (Implicit) =

PMCR *(FA + FB+,,,,,,, +FK-1 + FK)

Where FA, FB,,,,,,FK-1, and FK are subclasses of the class

C that have more than one superclass.

For entire classes in a class hierarchy, LOCKS_ON_

SUBCLASS (Implicit) is defined as overall locks required

for all classes that have more than one super class.

LOCKS_ON_SUBCLASS (Implicit) =

LOCKS_ON_SUBCLASS1 (Implicit)

+ LOCKS_ON_SUBCLASS2 (Implicit)

+

,,,,,,,,

+LOCKS_ON_SUBCLASSN-1(Implicit)

+LOCKS_ON_SUBCLASSN (Implicit)

For implicit locking, in multiple inheritance, total number

of locks for implicit locking, LOCKS_ON_IMPLICIT, is

defined as follows.

LOCKS_ON_IMPLICIT = LOCKS_ON_SUPERCLASS

+ LOCKS_ON_SUBCLASS (Implicit)

In the meanwhile, total number of locks for explicit

locking, LOCKS_ON_EXPLICIT, is defined as follows.

LOCKS_ON_EXPLICIT= LOCKS_ON_SUBCLASS

For a class hierarchy in Figure 2, assume that data access

frequency for each class is given in Table 2.

(Table 2) Data Access Frequency and Probability of

MCR /SCR

Class Data Access Frequency Prob. Of MCR/SCR

A 50 0.2/0.8

B 40 0.1/0.9

C 20 0.2/0.8

D 50 0.1/0.9

E 40 0.1/0.9

F 20 0.3/0.7

G 40 0.1/0.9

H 60 0.1/0.9

I 30 0.2/0.8

J 20 0.1/0.9

K 80 0.1/0.9

L 80 0.2/0.8

M 60 0.1/0.9

As in single inheritance, LOCKS_ON _SUPERCLASS

for each class is calculated as follows. For simplicity,

assume that, for a class that has more than one superclass,

only leftmost superclass is selected for intention locks. For

example, for class E, intention locks are set on class B and

A rather than C and A.

LOCKS_ON_SUPERCLASSA = 0

LOCKS_ON_SUPERCLASSB = 40

LOCKS_ON_SUPERCLASSC = 20

LOCKS_ON_SUPERCLASSD = 50

Development of Performance Evaluation Metrics of Concurrency Control in Object-Oriented Database Systems

112 2018. 10

LOCKS_ON_SUPERCLASSE = 80

LOCKS_ON_SUPERCLASSF = 40

LOCKS_ON_SUPERCLASSG = 80

LOCKS_ON_SUPERCLASSH = 180

LOCKS_ON_SUPERCLASSI = 90

LOCKS_ON_SUPERCLASSJ = 80

LOCKS_ON_SUPERCLASSK = 320

LOCKS_ON_SUPERCLASSL = 400

LOCKS_ON_SUPERCLASSM = 300

On the other hand, LOCKS_ON_ SUBCLASS for each

class is calculated as follows.

LOCKS_ON_SUBCLASSA = 0.2 * 50 * 12 = 120

LOCKS_ON_SUBCLASSB = 0.1 * 40 = 4

LOCKS_ON_SUBCLASSC = 0.2* 20 * 8 = 32

LOCKS_ON_SUBCLASSD = 0.1 * 50 * 8 = 40

LOCKS_ON_SUBCLASSE = 0

LOCKS_ON_SUBCLASSF = 0.3 * 20 * 6 = 36

LOCKS_ON_SUBCLASSG = 0.1 * 40 * 5 = 20

LOCKS_ON_SUBCLASSH = 0

LOCKS_ON_SUBCLASSI = 0.2 * 30 * 4 = 24

LOCKS_ON_SUBCLASSJ = 0

LOCKS_ON_SUBCLASSK = 0.1 * 80 * 2 = 16

LOCKS_ON_SUBCLASSL = 0

LOCKS_ON_SUBCLASSM = 0

Likewise, LOCKS_ON_SUBCLASS (Implicit) for each

class is calculated as follows.

LOCKS_ON_SUBCLASSA (Implicit) = 0.2 * 50 * 3 = 30

LOCKS_ON_SUBCLASSB (Implicit) = 0

LOCKS_ON_SUBCLASSC (Implicit) = 0.2* 20 * 2 = 8

LOCKS_ON_SUBCLASSD (Implicit) = 0.1 * 50 * 2 = 10

LOCKS_ON_SUBCLASSE (Implicit) = 0

LOCKS_ON_SUBCLASSF (Implicit) = 0.3 * 20 * 1 = 6

LOCKS_ON_SUBCLASSG ((Implicit) = 0.1 * 40 * 1 = 4

LOCKS_ON_SUBCLASSH (Implicit) = 0

LOCKS_ON_SUBCLASSI (Implicit) = 0

LOCKS_ON_SUBCLASSJ (Implicit) = 0

LOCKS_ON_SUBCLASSK (Implicit) = 0

LOCKS_ON_SUBCLASSL (Implicit) = 0

LOCKS_ON_SUBCLASSM (Implicit) = 0

In above example, LOCKS_ON_IMPLICIT and LOCKS_

ON_EXPLICIT are calculated as follows.

LOCKS_ON_IMPLICIT = LOCKS_ON_SUPERCLASS

+ LOCKS_ON_SUBCLASS (Implicit)

= 1,680 + 58= 1,738

LOCKS_ON_EXPLICIT = 292

Thus, since LOCKS_ON_IMPLICIT > LOCKS_ON_

EXPLICIT, it is better to use explicit locking for reducing

locking overhead in this case.

4. Conclusions and Further

Research Works

The typical OODBs can provide complex modeling

power than traditional relational databases. Therefore,

concurrency control schemes in OODBS are more complex

than concurrency control schemes in traditional databases.

Also, in typical OODBs, transactions are long-lived. It is

more likely that an active transaction may block other

concurrent transaction on the same database access. For this

reason, in order to maintain or keep good database

performance for OODBs, it is crucial to adopt a good

concurrency control scheme that incurs less locking

overhead.

In the previous works, two representative concurrency

control schemes are adopted for dealing with class hierarchy,

implicit locking and explicit locking, respectively. Both

concurrency control schemes have different philosophy

dealing with solving possible conflicts in class hierarchy. In

this paper, we present the performance evaluation metrics for

concurrency control schemes dealing with class hierarchy in

OODBs. The proposed performance evaluation metrics are

developed to determine which concurrency control scheme,

implicit locking and explicit locking, can provide better

performance for a given class hierarchy. We hope that our

proposed performance evaluation metrics will be helpful to

determine a right concurrency control scheme for a given

class hierarchy in OODBs.

We have a plan on developing performance evaluation

metrics dealing with composite object hierarchy. Usually a

Development of Performance Evaluation Metrics of Concurrency Control in Object-Oriented Database Systems

한국 인터넷 정보학회 (19권5호) 113

◐ 저 자 소 개 ◑

전 우 천 (Woochun Jun)

1985년 서강대학교 전산학 학사

1987년 서강대학교 대학원 전산학 석사

1997년 미국 University of Oklahoma 전산학 박사

1998년～현재 서울교육대학교 컴퓨터교육과 교수

관심분야 : 정보영재, 장애인정보화교육, 정보통신윤리교육

E-mail: wocjun@snue.ac.kr

홍 석 기 (Suk-Ki Hong)

1985년 서강대학교 경제학과 학사

1996년 미국 University of Nebraska-Lincoln, Management 박사

2003년～현재 단국대학교 상경대학 교수

관심분야 : e-Business, e-Service, SCM, Current Engineering,

Product Life Cycle Management

E-mail: skhong017@dankook.ac.kr

composite object has more complicated relationships among

shared and non-shared objects. It means that developing

performance evaluation metrics could be more complicated.

We will finally develop an integrated performance evaluation

metrics for both of class hierarchy and class composition

hierarchy.

References

[1] M. Cart and J. Ferrie, “Integrating Concurrency Control

into an Object-Oriented Database System”, In Proc. of

2nd Int. Conf. on Extending Data Base Technology,

Venice, Italy, pp. 363-377, 1990.

[2] W. Jun and S. Hong, “Developing of a Concurrency

Control Technique for Multiple Inheritance in

Object-Oriented Databases”, Journal of Internet

Computing and Services, Vol. 15, No. 1, 2014.

http://dx.doi.org/10.7472/jksii.2014.15.1.63

[3] P. Bernstein, V. Hadzilacos and N. Goodman,

“Concurrency Control and Recovery in Database

Systems”, Reading, Massachusetts, Addison-Wesley,

1987.

[4] L. Lee and R. Liou, “A Multi-Granularity Locking

Model for Concurrency Control in Object-Oriented

Database Systems”, IEEE Trans. on Knowledge and

Data Engineering, Vol. 8, No. 1, pp. 144-156, 1996.

[5] C. Malta and J. Martinez, “Automating Fine

Concurrency Control in Object-Oriented Databases”, In

Proc. of 9th IEEE Conf. on Data Engineering, Vienna,

Austria, pp. 23-260, Apr., 1993.

[6] J. Garza and W. Kim, “Transaction Management in an

Object-Oriented Database System”, In Proc. of ACM

SIGMOD Int. Conf. on Management of Data, Chicago,

Illinois, pp. 37-45, Jun., 1988.

[7] C. Malta and J. Martinez, “Controlling Concurrent

Accesses in an Object-Oriented Environment”, In Proc.

of 2nd Int. Symp. on Database Systems for Advanced

Applications, Tokyo, Japan, pp. 192-200, Apr. , 1992.

[8] W. Kim, E. Bertino and J. Garza, “Composite Object

Revised”, ACM SIGMOD RECORD, Vol. 18, No. 2,

pp. 337-347, 1989.

