References
- "Innovation, organisation, and sophistication-these are the tools of cyber attackers as they work harder and more efficiently to uncover new vulnerabilities", Symantec Internet Security Threat Report, 2018. https://resource.elq.symantec.com/LP=5840?cid=70138000000rm1eAAA
- Nataraj L, Karthikeyan S, Jacob G, Manjunath B. S., "Malware images: visualization and automatic classification", In proc. of the 8th ACM international symposium on visualization for cyber security 2011. http://doi.org/10.1145/2016904.2016908
- Ji H., and Im E., "Malware Classification Using Machine Learning and Binary Visualization", the Korea Computer Congress. KCC, pp.1084-1086, 2017. http://dx.doi.org/10.5626/KTCP.2018.24.4.198
- Schultz MG, Eskin E, Zadok F, Stolfo SJ, "Data mining methods for detection of new malicious executables", In IEEE symposium on security and privacy(S&P '01), 2001. https://doi.org/10.1109/SECPRI.2001.924286
- Cohen W. W., "Fast effective rule induction", In Proceedings of the Twelfth International Conference on Machine Learning, 1995. https://doi.org/10.1016/B978-1-55860-377-6.50023-2
- Kong D. and Yan G., "Discriminant malware distance learning on structural information for automated malware classification", In ACM SIGKDD 2013. http://dx.doi.org/10.1145/2487575.2488219
- Li Q. and Li X., "Android malware detection based on static analysis of characteristic tree", In international conference on cyber-enabled distributed computing and knowledge discovery (cyberc), 2015. https://doi.org/10.1109/CyberC.2015.88
- Santos I., Brezo F., Ugarte-Pedrero X., Bringas P. G., "Opcode sequences as representation of executables for data-mining-based unknown malware detection", Elsevier Information Sciences, Vol. 231, pp. 64-82, 2013. https://doi.org/10.1016/j.ins.2011.08.020
- Bayer U., Comparetti P. M., Hlauschek C., Kruegel C., and Kirda E., "Scalable, behavior-based malware clustering", In NDSS 2009. https://www.ndss-symposium.org/ndss2009/scalablebehavior-based-malware-clustering/
- Anderson B., Quist D., Neil J., Storlie C., and Lane T., "Graph-based malware detection using dynamic analysis", Journal in computer Virology, Vol. 7, 247-258, 2011. https://doi.org/10.1007/s11416-011-0152-x
- Fujino A., Murakami J., and Mori T., "Discovering similar malware samples using api call topics", In IEEE CCNC, 2015. https://doi.org/10.1109/CCNC.2015.7157960
- Ni S., Qian Q., and Zhang R., "Malware identification using visualization images and deep learning", Elsevier Computers & Security, 2018. https://doi.org/10.1016/j.cose.2018.04.005
- Han KS, Lim JH, Kang B, Im EG, "Malware analysis using visualized images and entropy graphs", Int Journal of Information Security, Vol.14, pp. 1-14, 2015. https://doi.org/10.1007/s10207-014-0242-0
- Ronen R., Radu M., Feuerstein C., Yom-Tov E., and Ahmadi M., "Microsoft Malware Classification Challenge", arXiv preprint arXiv:1802.10135, 2018. https://arxiv.org/abs/1802.10135
- Gong L., Mueller M., Prafullchandra H., and Schemers R., "Going beyond the sandbox: An overview of the new security architecture in the Java development kit 1.2", In USENIX Symposium on Internet Technologies and Systems, 1997. https://www.usenix.org/conference/usits-97/going-beyond-sandbox-overview-new-security-architecture-java-development-kit-12
- Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., and Rabinovich A., "Going deeper with convolutions", In Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), 2015. https://doi.org/10.1109/CVPR.2015.7298594
- Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., and Kudlur M., "TensorFlow: A system for large-scale machine learning", in the Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation(OSDI), pp. 265-283, 2016. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
- LeCun Y., Bottou L., Bengio Y., and Haffner P., "Gradient-Based Learning Applied to Document Recognition", in Proceeding of the IEEE 86.11, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
- "ImageNet Large Scale Visual Recognition Competition", http://www.image-net.org/challenges/LSVRC/
- Arora S., Bhaskara A., Ge R., and Ma T., "Provable bounds for learning some deep representations", In International Conference on Machine Learning, pp. I-584-I-592, 2014. http://proceedings.mlr.press/v32/arora14.pdf