DOI QR코드

DOI QR Code

Correlation Analysis between Game Bots and Churn using Access Record

Access Record를 활용한 게임 봇과 유저 이탈의 상관관계 분석

  • Kim, Young Hwan (Graduate School of Information Security, Korea University) ;
  • Yang, Seong Il (SW.Content Research Laboratory, Electronics and Telecommunication Research Institute) ;
  • Kim, Huy Kang (Graduate School of Information Security, Korea University)
  • 김영환 (고려대학교 정보보호대학원) ;
  • 양성일 (한국전자통신연구원) ;
  • 김휘강 (고려대학교 정보보호대학원)
  • Received : 2018.08.07
  • Accepted : 2018.10.16
  • Published : 2018.10.20

Abstract

Game bots distribute a large amount of goods or items used in a game, thereby lowering the value of game goods and items. Also, a large number of game bots hunt monsters and collect items, which hinders ordinary users from enjoying content normally. However, no research has been done on the type of user and the type of activity that the increase in bots specifically affects. Therefore, this study provides a practical implication to encourage users to use games by classifying types based on the game users' access data and analyzing the correlation with user departure due to the increase of bots.

게임 봇은 게임에서 사용되는 재화 또는 아이템 등을 대량으로 유통시키며 게임 재화 및 아이템의 가치를 하락시키는 한편 아이템을 획득하기 위해 봇끼리 몰려다니면서 몬스터를 사냥하고 아이템을 채집하므로 일반 유저들이 정상적으로 콘텐츠를 즐기는 활동을 방해해 왔다. 그러나 봇의 증가가 구체적으로 어떤 유형의 유저에게 영향을 미치는지, 그리고 어떤 활동 유형을 감소시키는지에 대한 연구는 알려진 바가 없었다. 이에 따라 본 연구에서는 게임 유저들의 접속 데이터를 토대로 유형을 분류하고 봇의 증가에 따른 유저 이탈과의 상관관계를 분석함으로써 유저들의 게임 이용을 유도하는 실무적인 시사점을 제공한다.

Keywords

References

  1. Korea Creative Content Agency, 2017 White paper on Korean games, Korea Creative Content Agency, 35, Gyoyukgil, Najusi, Jeollanamdo, Korea, 2017.
  2. Kang, Ah Reum, J. Y. Woo, and Huy Kang Kim, "Data and text mining of communication patterns for game bot detection," Proceedings of the 3th International Conference on Internet, pp. 495-500, 2011.
  3. Bartle, Richard, "Hearts, clubs, diamonds, spades: Players who suit MUDs," Journal of MUD research, vol. 1, no. 19, Jun, 1996.
  4. Yee, Nick, "Motivations for play in online games," Cyber Psychology & behavior, vol. 9, no. 6, pp. 772-775, Jan. 2016.
  5. Z. Borbora, J. Srivastava, K.-W. Hsu, and D.Williams, "Churn Prediction in MMORPGs using Player Motivation Theories and an Ensemble Approach," Proc. of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust(PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom), IEEE, pp. 157-164, Oct. 2011.
  6. Bauckhage, C., Kersting, K., Sifa, R., Thurau, C., Drachen, A., & Canossa, A. "How players lose interest in playing a game: An empirical study based on distributions of total-playing times," 2012 conference on IEEE In Computational Intelligence and Games(CIG), IEEE, pp. 139-146, Sep. 2012.
  7. T. Vafeiadis, K. I. Diamantaras, G. Sarigiannidis, K. Ch. Chatzisavvas, "A comparison of machine learning techniques for customer churn prediction," Simulation Modelling Practice and Theory, Vol. 55, pp. 1-9, Jun. 2015. https://doi.org/10.1016/j.simpat.2015.03.003
  8. N. Lu, H. Lin, J. Lu, and G. Zhang, "A Customer Churn Prediction Model in Telecom Industry Using Boosting," IEEE Transactions on Industrial Informatics, Vol. 10, No. 2, pp. 1659-1665, May. 2014. https://doi.org/10.1109/TII.2012.2224355
  9. Borbora, Zoheb H., and Jaideep Srivastava. "User behavior modelling approach for churn prediction in online games." Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom). IEEE, Sep. 2012.
  10. Runge, Julian, et al. "Churn prediction for high-value play-ers in casual social games." Computational Intelligence and Games, 2014 IEEE Conference on. IEEE, Aug. 2014.
  11. Sejoon Oh, Eunjo Lee, Jiyoung Woo, Huy Kang Kim, "Constructing and Evaluating a Churn Prediction Model using Classification of User Types in MMORPG," KIISE Transactions on Computing Practices, Vol. 24, no. 5, pp. 220-226, May. 2018. https://doi.org/10.5626/KTCP.2018.24.5.220
  12. Ha-bin Yim, Huy-kang Kim, Seung-joo Kim, "Using Image Visualization Based Malware Detection Techniques for Customer Churn Prediction in Online Games," Journal of the Korea Institute of Information Security & Cryptology, Vol. 27, no. 6, pp. 1431-1439, Dec. 2017. https://doi.org/10.13089/JKIISC.2017.27.6.1431
  13. Kawale, J., Pal, A., & Srivastava, J., "Churnprediction in MMORPGs: A social influence based approach," In Computational Science and Engineering, 2009. CSE'09. International Conference on Vol. 4, IEEE, Aug. 2009.
  14. Debeauvais, T., Nardi, B., Schiano, D. J., Du cheneaut, N., & Yee, N., "If you build it the y might stay : retention mechanisms in World of Warcraft," In Proceedings of the 6th International Conference on Foundations of Digital Games, ACM, pp. 180-187, Jun, 2011.
  15. Kunwoo Park, Meeyoung Cha. "Churn Analysis of Maximum Level Users in Online Games." Journal of KIISE, Vol. 44, no. 3, pp. 314-322, Mar. 2017. https://doi.org/10.5626/JOK.2017.44.3.314
  16. J. Hadden, A. Tiwari, R. Roy, and D. Ruta, "Churn Prediction using Complaints Data," Proc. of World Academy Of Science, Engineering and Technology, Vol. 13, pp.158-163, May. 2006.
  17. Joo Yeon Moon, Huy Kang Kim, Jiyoung Woo, "Churn Prediction in Online Games through User Interaction Analysis," KIISE Transactions on Computing Practices, Vol. 24, no. 9. pp. 433-441. Sep. 2018. https://doi.org/10.5626/KTCP.2018.24.9.433
  18. E. Lee, B. Kim, S. Kang, B. Kang, Y. Jang and H. K. Kim, "Profit Optimizing Churn Prediction for Long-term Loyal Customer in Online games," IEEE Transactions on Games, Oct. 2018.
  19. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE:Synthetic Minority Oversampling Technique", Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, Jun, 2002. https://doi.org/10.1613/jair.953
  20. Jihoon Jeon, Hyunsoo Park, "Churn Prediction using Game Log Data in Mobile Game," KIISE Transactions on Computing Practices, pp.696-698, Dec. 2016
  21. J. Lee, J. Lim, W. Cho, and H. K. Kim, "In-Game Action Sequence Analysis for Game BOT Detection on the Big Data Analysis Platform," Proc. of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Vol. 2, pp. 403-414, 2015.
  22. J. Lee, J. Lim, W. Cho, and H. K. Kim, "I know what the BOTs did yesterday: Full action sequence analysis using Naive Bayesian algorithm," Proc. of the 2013 12th Annual Workshop on Network and Systems Support or Games (NetGames), IEEE, pp. 1-2, Dec. 2013.
  23. J. Lee, S. W. Kang, and H. K. Kim, "A study on hard-core users and bots detection using classification of game character's growth type in online games," Journal of Korea Institute of Information Security and Cryptology, Vol. 25, No. 5, pp. 1077-1084, 2015. https://doi.org/10.13089/JKIISC.2015.25.5.1077
  24. H. J. Choi, J. Y. Woo, and H. K. Kim, "Online Game Identity Theft Detection Model based on Hacker's Behavior Analysis," Journal of Korea Game Society, Vol. 11, No. 6, pp. 81-98, 2011. https://doi.org/10.7583/JKGS.2011.11.6.081