DOI QR코드

DOI QR Code

Velocity Field Estimation using Karman Vortex Images

칼만 와류(渦流) 영상을 이용한 속도장 추정

  • Kim, Hyeong-kwon (Department of Computer Engineering, Kyung-Sung University) ;
  • Kim, Jin-woo (Department of Information and Communication Engineering, Kyung-Sung University)
  • Received : 2018.08.20
  • Accepted : 2018.09.10
  • Published : 2018.10.31

Abstract

Numerical analysis has the advantage that no actual flow pathways need to be formulated, making this technique especially useful for simulation analysis such as pathway design. However, it does require that the complete physical parameters of the fluid and the complete boundary conditions be known. If any of them are unknown, either the calculation will become impossible, or even if the calculation does converge, the reliability of the result will be low. Therefore, a means of more accurate acquisition of flow information is required. In this paper, we present techniques for estimating flow field from a constraint equation for image information and velocity field, based on the image intensity changes accompanying the motion of dye in waterway. In the equation, we entered a stabilizing term to suppress estimation error. We show the effectiveness of our method through experiments with generated and real images of a Karman vortex.

수치 해석은 유동 경로를 공식화할 필요가 없다는 장점으로 경로 설계와 같은 시뮬레이션 분석에 유용하다. 그러나 유체의 완전한 물리적 매개 변수와 경계 조건을 알고 있어야 한다. 그중 하나라도 알 수 없는 경우, 계산이 불가능해 지거나, 수렴되더라도 결과의 신뢰성이 낮아진다. 따라서 유동 정보를 보다 정확하게 획득하는 방법이 요구된다. 본 논문은 수로 내의 염료의 이동에 수반되는 영상 명도의 변화를 기반으로 영상 정보 및 속도장의 구속식을 이용하여 염료의 속도장을 추정하는 기법을 제시한다. 구속식은 속도장 추정 시에 발생하는 오류를 최소화하기 위해서 안정화 항을 추가했다. 본 논문은 카르만 와류의 생성 이미지와 실제 영상을 대상으로 제안 수법의 효율성을 보인다.

Keywords

References

  1. H. J. Kim, and J. H. Park, "Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 7, no. 6, pp. 897-906, Jun. 2017.
  2. D. W. Kim, "Moving Object Extraction Using Spatio-Temporal Difference," Journal of the Korea Institute of Information and Communication Engineering, vol. 6, no. 8, pp. 1319-1324, Dec. 2002.
  3. K. K. Yu, S. J. Kim, and D. S. Kim, "Measurement of Two-Dimensional Velocity Distribution of Spatio-Temporal Image Velocimeter using Cross-Correlation Analysis," J. Korea Water Resources Association, vol. 47, no. 6, pp. 537-546, Jun. 2014. https://doi.org/10.3741/JKWRA.2014.47.6.537
  4. W. M. Muhammad, A. K. Bushra, "Cross Correlation Velocity Measurement of Multiphase Flow," International Journal of Science and Research, vol. 4, no. 2, pp. 802-807, Feb. 2015.
  5. C. Christian, and C. J. Kahler, "Cross-correlation or tracking-comparison and discussion," 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon: Portugal, pp. 9-12, Jul. 2012.
  6. D. J. Fleet, and A. D. Jepson, "Computation of component image velocity from local phase information ," International Journal of Computer Vision, vol. 5, no. 1, pp. 77-104, Aug. 1990. https://doi.org/10.1007/BF00056772
  7. Z. Zhang, F. Li, M. Liu and P. K. Yadav. (2016, August). Image Matching Based on Local Phase Quantization Applied for Measuring the Tensile Properties of High Elongation Materials. Hindawi Mathematical Problems in Engineering [Online]. http://dx.doi.org/10.1155/2016/5182106
  8. B. Mostofian, C. M. Cai, M. D. Smith, L. Petridis, X. Cheng, C. E. Wyman and J. C. Smith, "Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications," Journal of the American Chemical Society, vol. 138, no. 34, pp. 10869-10878, Aug. 2016. https://doi.org/10.1021/jacs.6b03285
  9. T. Gautama, and M. A. Van Hulle, "A phase-based approach to the estimation of the optical flow field using spatial filtering," Neural Networks, IEEE Transactions on, vol. 13, no. 5, pp. 1127-1136, Sep. 2002. https://doi.org/10.1109/TNN.2002.1031944
  10. B. K. Horn and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol. 17, pp. 185-203, 1981. https://doi.org/10.1016/0004-3702(81)90024-2
  11. A. Pentland, and B. Horowitz, "Recovery of nonrigid motion and structure," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 7, pp. 730-742, 1991. https://doi.org/10.1109/34.85661
  12. Y. Wang, X. Yan, J. Zheng, and M. Jiang. (2015, April). Sparse Approximation for Nonrigid Structure from Motion. Hindawi Mathematical Problems in Engineering [Online]. http://dx.doi.org/10.1155/2015/435385.
  13. W. Gong, X. Zhang, J. Gonzalez, A. Sobral, T. Bouwmans, C. Tu, and E. Zahzah, "Human Pose Estimation from Monocular Images: A Comprehensive Survey," Sensors, vol. 16, no. 12, pp. 1-39, Dec. 2016. https://doi.org/10.1109/JSEN.2016.2616227