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Abstract 
 

A fast image encryption system based on substitution and diffusion was proposed, which 
includes one covering process, one substitution process and two diffusion processes. At first, 
Chen's chaotic system together with an external 256-bit long secret key was used to generate 
the key streams for image encryption, in which the initial values of Chen's chaotic system 
were regarded as the public key. Then the plain image was masked by the covering process. 
After that the resulting image was substituted with the disturbed S-Box of AES. Finally, the 
substituted image was diffused twice with the add-modulo operations as the core to obtain 
the cipher image. Simulation analysis and comparison results with AES and some existing 
image cryptosystems show that the proposed image cryptosystem possesses the merits of fast 
encryption/decryption speed, good statistical characteristics, strong sensitivity and etc., and 
can be used as a candidate system of network security communication. 
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1. Introduction 

Chaotic image cryptology research has become a hotspot in the field of information 

security. And that includes three main research directions: First is to study the new chaotic 
systems which can produce cryptographic key streams [1-5]. The direction serves as an 
important application of chaos theory to give birth to the study of new chaotic systems. 
Second is to study the new image encryption schemes [6-10]. The research results of this 
direction show that the variety of novel image confusion and diffusion algorithms has 
emerged in recent decades. Third is to study the crypto-analysis of image cryptosystem 
[11-15]. Accompanied by the emergence of a large number of image encryption systems, 
quantities of crypto-analysis systems have been proposed, which are simulating the further 
research on new high-intensity image cryptography. 
   Recently, Zhang and Tang suggested an image cryptosystem with identical encryption 
and decryption algorithm [16]. The length of secret key is 64d bits (where, d is a positive 
integer). The encryption/decryption process consists of two diffusion operations, two matrix 
rotations and one plaintext-related scrambling. Due to skillful using the matrix rotations, the 
encryption process and decryption process in their scheme share the same algorithm. Chai et 
al. proposed an image encryption system using the memristive hyper-chaotic system, DNA 
encoding and cellular automaton [17]. The system employed the SHA-256 Hash value of 
plain image as the secret key of size 256 bits. The secret key was then converted into four 
initial values of memristive hyper-chaotic system to iteratively generate the key streams. 
Finally, the key streams were used in confusion and diffusion processes under the rules of 
DNA encoding and cellular automaton. From the point of view of cryptography, Chai et al.'s 
system is essentially a complex one-time pad system, which has certain theoretical research 
value, but almost no application value. Diaconu presented a new image encryption system 
using bit-level permutation [18]. In this system each row of image was converted into a bit 
sequence, and the bit-shift operation was based on the whole row of bit sequence. This 
algorithm is very suitable for hardware implementation, but not suitable for computer 
software implementation. At the same time, Fan et al. cracked this image encryption system 
by means of chosen plaintext attack [19]. Zhang et al. delivered an image encryption 
algorithm with typical confusion-diffusion architecture based on Chen's chaotic system and 
3D Cat map [20]. In order to improve the processing speed of encryption, their scheme used 
3D bit permutation algorithm based on sorting method and 3D Cat transform matrix. 
However, Zhang et al. pointed out that the system in [20] cannot frustrate the chosen 
plaintext attack [21]. 
   All of the aforesaid image encryption systems used the confusion-diffusion architecture. 
In this architecture the diffusion algorithms usually employ add-then-modulo operation or 
XOR operation, while the confusion algorithms are the main innovation points of 
cryptographic scheme [22]. However, some of the research results have obvious security 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018            4489 

vulnerabilities, so as to fail in confronting the chosen/known plaintext attacks [19,21]. 
Aiming at reducing the above security problems as much as possible, this paper proposed a 
novel image cryptosystem based on the combination of substitution and diffusion algorithms. 
The substitution technology instead of confusion is used for image information hiding, 
hoping to get better information security performance. This paper starts with the research on 
key streams generator with an external key and the Chen's chaotic system. The initial values 
of Chen's system are taken as the public key. Then, the key streams are used to cover the 
plain image. After that the covered image is encrypted into cipher image by means of 
substitution-diffusion-diffusion architecture. Finally, the simulation test and theoretical 
analysis are performed to verify that the proposed image cryptosystem possesses good 
security characteristics and fast encryption/decryption speed. 
   The rest of this paper is organized as follows: Section 2 introduces the chaotic pseudo 
random sequence generator; Section 3 details the structure of proposed image cryptosystem 
and its algorithm implementation steps; Section 4 gives the typical representatives of 
simulation results; Section 5 performs the security performance analyses of proposed image 
cryptosystem, and compares them with some of existing image cryptosystems; Finally, 
Section 6 summarizes the full paper. 

2. Pseudo random sequence generator 

Chaotic systems are widely used to generate pseudo random sequences due to their extreme 
sensitivity to initial values and parameters, and ergodicity of state space. This section 
presents a method for generating pseudo random sequences by multiple initial states acting 
on a chaotic system. Without losing generality, take a one-dimensional chaotic system as an 
example. Assume that the discrete state evolution equation of one-dimensional chaotic 
system is described by 

x(n)=F(x(n-1);u)                                 (1) 
Where, u is the parameter vector, and x(n) is the n-th state. 
   Now, let there be a total of k pieces of initial states, denoted by {si}, i=1,2,...,k. The steps 
of generating pseudo random sequences are as follows: 
   Step 1. Randomly take a state value x0 from the state space of Eq. (1) as the initial value 
of Eq. (1), then iterate it for l times (l>10). Denote the last 10 iteration values as 
{xl-9,xl-8,xl-7,...,xl-1,xl}, and then calculate λ by the following formula 

   λ = |𝑥𝑙|
∑ �𝑥𝑙−𝑗�9
𝑗=0

                                   (2) 

Where, |x| returns the absolute value of x. 
   Step 2. Let i=1. 
   Step 3. Let new xl=(1-λ)xl+λsi. Take the new xl as the initial value x0 of Eq. (1), and then 
iterate it for l times. Denote the last 10 iteration values as {xl-9,xl-8,xl-7,...,xl-1,xl}, and then 
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calculate the new λ also by Eq. (2). 
   Step 4. Let i=i+1. If i<k, then jump to Step 3; otherwise, continue to Step 5. 
   Step 5. Let new xl=(1-λ)xl+λsk. Take the new xl as the initial value x0 of Eq. (1), and then 
iterate it for l times to bypass the transient state. Then, continue to iterate Eq. (1) for L times 
to get a floating-point state sequence of length L, denoted by x={xj,j=1,2,...,L}. 
   Step 6. Convert the sequence x into an integer sequence, denoted by t={tj,j=1,2,...,L}, 
using the following formula. 

tj=(|xj|×232) mod 256, j=1,2,...,L                         (3) 
   And the sequence t is the key stream for image encryption. 
   For a multidimensional chaotic system, one can choose an optional state form the state 
vector of discretized state equation as the role of the above x of one-dimensional chaotic 
system. Then, one can use the above method to generate pseudo random sequence by 
multiple initial states acting on the multidimensional chaotic system. 
   The proposed image cryptosystem is as shown in Fig. 1. In Fig. 1, three pseudo random 
matrices X, Y and Z, and three pseudo random numbers r1, r2 and r3, are generated by the 
secret key K with the help of key stream generator. Here, the secret key K used is of length 
256 bits and consists of 32 pieces of 8-bit unsigned bytes, namely, K={Ki, i=1,2,...,32}, 
where, each Ki is a byte. The K is transformed into 32 pieces of initial states, denoted by 
s={si, i=1,2,...,32}, using the following formula. 

   si=Ki /256, i=1,2,...,32                                   (4) 

 
Fig. 1. Proposed image cryptosystem 

 
    Any chaotic system that can generate cryptographic pseudo random numbers can be 
chosen as the mapping F in Eq. (1). Here, Chen's chaotic system [23] is selected, and its 
formula is as follows. 

�
𝑥̇ = 𝑎(𝑦 − 𝑥)

𝑦̇ = (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦
𝑧̇ = 𝑥𝑦 − 𝑏𝑧

�                         (5) 

Where, a=35, b=3, c∈[20,28.4]. When c=28 (used in this paper), the phase portrait of Chen's 
system is as shown in Fig. 2 (with the size of discretized step being 0.002). 
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          (a) x vs. y                  (b) y vs. z                   (c) x vs. z 
Fig. 2. Phase portraits of Chen's system. 

 
Randomly select a group of state values (x0,y0,z0) from the state space of Eq. (5) as the initial 
values of iteration (which are open and serve as public key). Here, let l=100. Assume that the 
plain image is of size M×N, and the state x is selected as the disturbed state. Employ the 
above method with multiple initial states s and (x0,y0,z0) acting on Chen's system to 
iteratively generate three chaotic state sequences {xi}, {yi} and {zi} all of length L/3, where, 
L=3MN+3. Then, convert these three sequences into an integer sequence t={ti} of length 
L=3MN+3 using the following formulae. 

t3j-2=[|xj|×232] mod 256, t3j-1=[|yj|×232] mod 256, t3j=[|zj|×232] mod 256           (6) 
Where, j=1,2,...,L/3 , and [x] returns the integer part of x.  
   Then, generate X, Y, Z, r1, r2 and r3 form the sequence t with the following formulae. 

X(i,j)=tN(i-1)+j, Y(i,j)=tMN+N(i-1)+j, Z(i,j)=t2MN+N(i-1)+j, i=1,2,...,M, j=1,2,...,N        (7) 
r1=t3MN+1, r2=t3MN+2, r3=t3MN+3                                          (8) 

The matrices X, Y and Z and the pseudo random number r1, r2 and r3 are the key streams of 
proposed image cryptosystem. 
   To prove that the sequence t possesses good cryptographic characteristics, the test items 
of FIPS140-2 [24], such as Monobit test, Poker test, Runs test and Long run test, are 
performed on the sequence t. Without loss of generality, assume that the initial values of 
Chen's system are (x0,y0,z0) = (0.56, 0.809, 12.347), the step size is 0.002, l=100, and the 
secret key K={65, 212, 155, 202, 4, 27, 202, 161, 7, 233, 146, 36, 229, 154, 157, 109, 193, 
182, 117, 206, 39, 244, 177, 216, 34, 255, 74, 55, 12, 223, 205, 112}(in decimal format). By 
the above method a sequence t of length 2500 bytes is obtained. Then, the sequence t is 
converted into a bit sequence of length 20000 bits, whose test results are listed in Table 1. 
 

Table 1. FIPS140-2 test results of sequence t 

Test item 
Monobit 

test 

Poker 

test 

Runs test Long 

run test 

(>25) 

Length of runs 

1 2 3 4 5 >5 

bit 0 9878 
18.37 

2538 1206 614 327 153 145 0 

bit 1 10122 2419 1291 617 320 170 166 0 
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Theoretical 

value 

9725 ~ 

10725 

2.16 ~ 

46.17 

2315 ~ 

2685 

1114 ~ 

1386 

527 ~ 

723 

240 ~ 

384 

103 ~ 

209 

103 ~ 

209 
0 

Results Pass Pass Pass Pass Pass Pass Pass Pass Pass 

  
  As can be seen from Table 1, the sequence t passes all the test items of FIPS140-2, which 
shows that the proposed pseudo random number generator can produce cryptographic pseudo 
random sequences with good statistical characteristics. 
   The following analyzes the autocorrelation of the sequence t. Convert t into a sequence 
of zero mean, denoted by s, with the following formula. 

s(i)=2t(i)-255, i=1,2,...,L                                    (9) 
Where, L=12000, and t is generated by the above method with the same initial values and 
secret key K. Then, calculate the cyclic autocorrelation of s and illustrate the result of 
correlation coefficient in Fig. 3. 
 

 
Fig. 3. Cyclic autocorrelation of sequence s 

 
   It can be seen from Fig. 3 that the correlation coefficient curve of the sequence s is 
thumbtack-like, which shows that the sequence s (or its predecessor sequence t) has no 
correlation between the cyclic-shift sequences. So the adjacent data in the sequence t are not 
predictable, i.e. the sequence t can be used as the key stream for image encryption. 

3. Image cryptosystem 

In the proposed image cryptosystem shown in Fig. 1, the encryption process includes one 
covering operation, one substitution process and two diffusion processes. The decryption 
process is the inverse of the encryption process. Both the encryption process and the 
decryption process have no permutation or confusion process.  
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   In Fig. 1, the plain image P is assumed to be an 8-bit grayscale image of size M×N, and 
the secret key K is of length 256 bits. The matrices X, Y and Z and the three pseudo random 
numbers r1, r2 and r3 used as the key streams in encryption/decryption process are generated 
by the method described in Section 2 with the secret key K. The details of encryption and 
decryption processes are as follows. 
   (1) Covering operation and its inverse 
   From Fig. 1, the covering operation converts the plain image P into a matrix, denoted by 
A, using the following formula. 

     A(i,j)=P(i,j) ⊕ X(i,j), i=1,2,...,M, j=1,2,...,N                         (10) 
Where, ⊕ represents bitwise XOR (exclusive or) operation (the same meaning thereinafter).  
The covering operation uses the matrix X to mask the plain image P with the XOR operation. 
Because the XOR operation is invertible, the inverse of Eq. (10) is as follows. 

P(i,j)=A(i,j) ⊕ X(i,j), i=1,2,...,M, j=1,2,...,N                         (11) 
From Eq. (11), one can recover P from A with the help of X. 
   (2) Substitution process and its inverse 
   The S-Box of AES [25] shown in Table 2 is used in the substitution process. 
   For any 8-bit byte a, its higher 4 bits are considered as x, and the lower 4 bits as y, then 
one can get a unique 8-bit byte b by looking up the Table 2 with the coordinates (x,y), which 
is denoted by 

a 
S−Box
�⎯⎯⎯� b                             (12) 

   The concrete steps of substitution are as follows. 
   Step 1. XOR each element of S-Box in Table 2 with r1 to get a new S-Box. The new 
S-Box is employed in the following steps. 
   Step 2. Let T(1,1)=[A(1,1)+r2] mod 256, and obtain B(1,1) from T(1,1) by looking up 
the S-Box. This process is denoted by 

    [A(1,1)+r2] mod 256 = T(1,1) 
S−Box
�⎯⎯⎯� B(1,1)                               (13) 

   Step 3. Let j=2 to N, then perform the following for each j. 

 [A(1,j)+A(1,j-1)+T(1,j-1)] mod 256 = T(1,j) 
S−Box
�⎯⎯⎯� B(1,j)                    (14) 

   Step 4. Replace A(2,1) by B(2,1) with the following formula. 

 [A(2,1)+A(1,1)+A(1,N)+T(1,1)+T(1,N)] mod 256 = T(2,1) 
S−Box
�⎯⎯⎯� B(2,1)         (15) 

   Step 5. Let i=3 to M, then do the following for each i. 

[A(i,1)+A(i-1,1)+T(i-1,1)] mod 256 = T(i,1) 
S−Box
�⎯⎯⎯� B(i,1)                   (16) 
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Table 2. S-Box of AES 

S-Box 
y 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

x 

0 99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118 

1 202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192 

2 183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21 

3 4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117 

4 9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132 

5 83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207 

6 208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168 

7 81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210 

8 205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115 

9 96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219 

10 224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121 

11 231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8 

12 186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138 

13 112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158 

14 225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223 

15 140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22 

 
   Step 6. Let i=2 to M and j=2 to N, then do the following for each combination of i and j. 

 [A(i,j)+A(i,j-1)+A(i-1,j)+T(i,j-1)+T(i-1,j)] mod 256 = T(i,j) 
S−Box
�⎯⎯⎯� B(i,j)         (17) 

   After the above processing, the matrix A is replaced by the matrix B with the help of r1, 
r2 and S-Box.  
   The above substitution process is reversible, and the matrix A can be recovered from the 
matrix B with the help of r1, r2 and S-Box. The inverse of the substitution is as follows: 
   Step 1. Denote the inverse of S-Box in Table 2 by S-Box-1. 
   Step 2. XOR each element of B with r1 to get a new matrix, denoted by G. 
   Step 3. Obtain T(1,1) from G(1,1) by looking up S-Box-1, then get A(1,1) by calculating 
[T(1,1)-r2+256] mod 256. This process is denoted by 

G(1,1) 
 S−Box−1
�⎯⎯⎯⎯⎯� T(1,1), then [T(1,1) + 256 - r2] mod 256=A(1,1)               (18) 

   Step 4. Let j=2 to N, then carry out the following formula for each j. 

 G(1,j) 
S−Box−1
�⎯⎯⎯⎯⎯� T(1,j), then [T(1,j)+256×2-T(1,j-1)-A(1,j-1)] mod 256 =A(1,j)        (19) 

   Step 5. Recover A(2,1) from G(2,1) by the following formula. 

G(2,1) 
S−Box−1
�⎯⎯⎯⎯⎯� T(2,1), then [T(2,1)+256×4-T(1,1)-T(1,N)-A(1,1)-A(1,N)] mod 256=A(2,1)  (20) 
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   Step 6. Let i=3 to M, then do the following formula for each i. 

  G(i,1) 
S−Box−1
�⎯⎯⎯⎯⎯� T(i,1), then [T(i,1) +256×2- T(i-1,1)-A(i-1,1)] mod 256 = A(i,1)    (21) 

   Step 7. Let i=2 to M, and j=2 to N, then do the following formula for each combination 
of i and j. 

G(i,j) 
S−Box−1
�⎯⎯⎯⎯⎯� T(i,j), then [T(i,j)+256×4-T(i,j-1)-T(i-1,j)-A(i,j-1)-A(i-1,j)] mod 256 = A(i,j)  (22) 

   After the above processing, the matrix A is recovered from the matrix B with the help of 
r1, r2 and S-Box. 
   (3) Diffusion-I process and its inverse 
   The diffusion process disperses the information of each pixel in the original image to as 
many pixels as possible to get the resultant image. The multiplication based on Galois field 
GF(28) is used in the diffusion process with the primitive polynomial being 
m(x)=x8+x4+x3+x+1. In Fig. 1, the diffusion process includes two stages, namely, the 
diffusion-I and the diffusion-II. The latter will be discussed in the next part labeled with (4) 
of subhead. The specific steps of diffusion-I process are as follows: 
   Step 1. Obtain D(M,N) from B(M,N) and Y(M,N) using the following 

  D(M,N) = [B(M,N)+Y(M,N)] mod 256                         (23) 
   Step 2. Let j=N-1 to 1, then calculate D(M,j) for each j with the following formula. 

D(M,j) =[B(M,j)+B(M,j+1) +D(M,j+1) +Y(M,j)] mod 256                (24) 
   Step 3. Generate D(M-1,N) from B(M-1,N), Y(M-1,N), B(M,1) and D(M,1) with the 
following formula. 

    D(M-1,N)=[B(M-1,N)+ B(M,1) +D(M,1) +Y(M-1,N)] mod 256            (25) 
   Step 4. Let i=M-2 to 1, then calculate D(i,N) for each i with the following formula. 

    D(i,N)=[B(i,N)+B(i+1,N) +D(i+1,N) +Y(i,N)] mod 256                  (26) 
   Step 5. Let i=M-1 to 1, and j=N-1 to 1, then calculate D(i,j) for each combination of i and 
j with the following formula. 

D(i,j)={B(i,j)+Y(i,j)•[D(i,j+1)⊕B(i+1,j)]+[Y(i,j)⊕128]•[D(i+1,j)⊕B(i,j+1)]} mod 256  (27) 
   After the above processing, one can get the matrix D from the matrices B and Y. 
   The diffusion-I process is reversible, and its inverse process recovers B from D and Y 
with the following steps: 
   Step 1. Obtain B(M,N) from D(M,N) and Y(M,N) with the following formula. 

 B(M,N)=[D(M,N) + 256 - Y(M,N)] mod 256                           (28) 
   Step 2. Let j=N-1 to 1, then calculate B(M,j) for each j with the following formula. 

B(M,j)=[D(M,j)+256×3-D(M,j+1)-B(M,j+1)-Y(M,j)] mod 256             (29) 
   Step 3. Generate B(M-1,N) from D(M-1,N), D(M,1), Y(M-1,N) and B(M,1) with the 
following formula. 

B(M-1,N)=[D(M-1,N)+256×3-D(M,1)- B(M,1) -Y(M-1,N)] mod 256        (30) 
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   Step 4. Let i=M-2 to 1, then calculate B(i,N) for each i with the following formula. 
B(i,N)=[D(i,N) + 256×3 -D(i+1,N) -B(i+1,N) - Y(i,N)] mod 256           (31) 

   Step 5. Let i=M-1 to 1, and j=N-1 to 1, then calculate B(i,j) for each combination of i and 
j with the following formula. 

B(i,j)= {D(i,j)+256×4-Y(i,j)•[D(i,j+1)⊕B(i+1,j)]-[Y(i,j)⊕128]•[D(i+1,j)⊕B(i,j+1)]} mod 256  
(32) 

   After the above processing, one can recover B from D and Y. 
   (4) Diffusion-II process and its inverse 
   From Fig. 1, the diffusion-II produces the cipher image C from the matrices D, Z and r3. 
The concrete steps of diffusion-II are as follows. 
   Step 1. Obtain C(1,1) from D(1,1), Z(1,1) and r3 with the following formula. 

  C(1,1)=[D(1,1)+Z(1,1) + r3] mod 256                          (33) 
   Step 2. Let j=2 to N, then calculate C(1,j) for each j with the following formula. 

C(1,j)=[D(1,j)+D(1,j-1)+Z(1,j)] mod 256                        (34) 
   Step 3. Generate C(2,1) from D(2,1), Z(2,1) and D(1,N) with the following formula. 

C(2,1)=[D(2,1)+D(1,N)+Z(2,1)] mod 256                       (35) 
   Step 4. Let i=3 to M, then calculate C(i,1) for each i with the following formula. 

   C(i,1)=[D(i,1)+D(i-1,1)+Z(i,1)] mod 256                        (36) 
   Step 5. Let i=2 to M, and j=2 to N, then calculate C(i,j) for each combination of i and j 
with the following formula. 

   C(i,j)=[D(i,j)+D(i,j-1)+D(i-1,j)+Z(i,j)] mod 256                        (37) 
   After the above processing, one can get the cipher image C from D, Z and r3. 
   The above diffusion-II is reversible, and its inverse process recovers D from C, Z and r3. 
And the concrete steps of the inverse process of diffusion-II are as follows: 
   Step 1. Obtain D(1,1) from C(1,1), Z(1,1) and r3 with the following formula. 

  D(1,1)= [C(1,1) + 256×2 - Z(1,1) - r3] mod 256                           (38) 
   Step 2. Let j=2 to N, then calculate D(1,j) for each j with the following formula. 

D(1,j)=[C(1,j) + 256×2 - D(1,j-1) -Z(1,j)] mod 256                        (39) 
   Step 3. Produce D(2,1) from C(2,1), Z(2,1) and D(1,N) with the following formula. 

D(2,1)=[C(2,1)+256×2-D(1,N)-Z(2,1)] mod 256                          (40) 
   Step 4. Let i=3 to M, then calculate D(i,1) for each i with the following formula. 

D(i,1)=[C(i,1) + 256×2 - D(i-1,1) - Z(i,1)] mod 256                       (41) 
   Step 5. Let i=2 to M, and j=2 to N, then calculate D(i,j) for each combination of i and j 
with the following formula. 

    D(i,j)=[C(i,j) + 256×3 - D(i,j-1) - D(i-1,j)-Z(i,j)] mod 256                  (42) 
    After the above processing, the matrix D is recovered from C with the help of Z. 
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4. Simulation results 

The computer used is configured with Intel Core i7-4720HQ CPU and 8GB DDR3L memory. 
And C# language based on Visual Studio 2017 Community Edition is used to program the 
proposed algorithm. Without losing generality, the 8-bit grayscale images of Lena, Baboon, 
Pepper, All-black image and All-white image are used in the simulation test (where, the 
images of Lena, Baboon and Pepper are from the USC-SIPI Image Database which is freely 
available at http://sipi.usc.edu/database/). And these images are all of size 256×256 pixels, 
and are shown in Figs. 4a-4e, respectively. In the test, the secret key K={255, 138, 130, 97, 
14, 17, 172, 88, 194, 103, 0, 137, 234, 71, 208, 26, 26, 243, 207, 231, 15, 113, 130, 61, 252, 
217, 9, 243, 21, 254, 80, 143} (in decimal format), the parameters of Chen's system (a, b, c) 
= (25, 3, 28), and the public key, i.e. the initial values of Chen's system, (x0, y0, z0) = (-8.319, 
12.0456, 36.789). Now, the proposed image encryption system is used to encrypt the plain 
images (as shown in Figs. 4a-4e, respectively), and the resultant cipher images are as shown 
in Figs. 4f-4j, respectively. Then the proposed image decryption system is used to decrypt 
the cipher images (as shown in Figs. 4f-4j, respectively), and the recovered images are as 
shown in Figs. 4k-4o, respectively. The images in Figs. 4k-4o are exactly the same as the 
original plain images of Figs. 4a-4e, respectively, indicating that the proposed image 
cryptosystem works properly. 

     

            (a)            (b)            (c)            (d)            (e) 

     

            (f)            (g)            (h)            (i)             (j) 

     

            (k)            (l)            (m)            (n)            (o) 
Fig. 4. Simulation results. (a)-(e) Plain images of Lena, Baboon, Pepper, All-black and 
All-white, respectively; (f)-(j) Cipher images of (a)-(e), respectively; (k)-(o) Recovered 

images of (f)-(j), respectively. 
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5. Security performance analysis 

5.1 Key space 

Currently, the information security standard issued by NIST is AES, and its key length is 128, 
192 or 256 bits. And NSA (National Security Agency) claimed that AES with key length of 
192 or 256 bits can be used to encrypt the top secret level documents. Referring to the key 
length of AES, the key length of proposed image cryptosystem is 256 bits. Therefore, the key 
space of proposed cryptosystem is of size 2256, about 1.1579×1077. Combining with the 
encryption/decryption speed in Section 5.4, the ability of proposed cryptosystem against the 
exhaustive attack will be discussed there. 
   In the proposed image cryptosystem, the initial values of Chen's system, i.e. x0, y0 and z0, 
are open data and serve as the public key. Where, x0∈[-19.23,24.27], y0∈[-21.03,27.47] and 
z0∈[6.86,44.00]. And the step size respecting x0, y0 and z0 is 10-13. Therefore, the size of 
public key space is about 7.8356×1043, equivalent to the public key length being about 146 
bits. The sensitivity of public key will be discussed in Section 5.3.4. 

5.2 Statistical characteristics analysis 

5.2.1 Histogram analysis 

The histogram directly reflects the distribution of pixels of each gray value in the image. 
Without lose of generality, here take the plain images of Figs. 4a-4e and their corresponding 
cipher images of Figs. 4f-4j as examples to analyze the histogram difference between plain 
and cipher images. The histograms of plain images Figs. 4a-4e are shown in Figs. 5a-5e, 
respectively. And the histograms of cipher images Figs. 4f-4j are shown in Figs. 5f-5j, 
respectively. Intuitively, the histograms of plain images have obvious fluctuations, while the 
histograms of cipher images are fairly flat. Therefore, there is distinguishable difference 
between them. 

 
        (a)              (b)              (c)               (d)              (e) 

  
        (f)               (g)              (h)              (i)               (j) 

Fig. 5. Histograms. (a)-(e) Histograms of plain images Figs. 4a-4e, respectively; 
(f)-(j) Histograms of cipher images Figs. 4f-4j, respectively. 
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   The quantitative analysis on the difference between the histograms of plain and cipher 
images is described below. 
   It is well known that an 8-bit M×N sized grayscale image I characterized with uniform 
distribution has the mean E(I) and variance Var(I) as follows. 

    E(I)= 1
256

∑ 𝑖255
𝑖=0 = 127.5                                     (43) 

Var(I)= 1
256

∑ 𝑖2255
𝑖=0 − 127.52 = 5.4613 × 103                    (44) 

However, for a certain 8-bit grayscale image J of size M×N, whose pixel values are in 
unknown distribution, one can calculate its mean E(J) and variance Var(J) as follows. 

E(𝑱) = 1
𝑀𝑁

∑ ∑ 𝑱(i, j)𝑁
𝑗=1

𝑀
𝑖=1                                    (45) 

Var(𝑱) = 1
𝑀𝑁

∑ ∑ [𝑱(i, j) − E(𝑱)]𝟐𝑁
𝑗=1

𝑀
𝑖=1                          (46) 

   According to Eqs. (45)-(46), the mean and variance of each histogram in Fig. 5 (i.e. the 
mean and variance of each image in Figs. 4a-4j) are calculated, and the results are listed in 
Tables 3-4. 

Table 3. The mean and variance of each histogram in Figs. 5a-5e 

 
Uniform 

distribution 
Fig. 5a Fig. 5b Fig. 5c Fig. 5d Fig. 5e 

mean 127.5 109.5 124.5 104.2 0 255 
variance 5.4613e3 2.0162e3 1.8339e3 3.2526e3 0 0 

 
Table 4. The mean and variance of each histogram in Figs. 5f-5j 

 
Uniform 

distribution 
Fig. 5f Fig. 5g Fig. 5h Fig. 5i Fig. 5j 

mean 127.5 127.4 126.9 127.5 127.8 127.1 
variance 5.4613e3 5.4587e3 5.4860e3 5.4768e3 5.4399e3 5.4585e3 

   
 In Table 3, the mean and variance of each histogram in Figs. 5a-5e correspond sequentially 
to the mean and variance of each plain image in Figs. 4a-4e. Table 3 shows the differences 
between the plain images and uniformly distributed image in both mean and variance are 
significantly large, especially the minimum relative error of variance is greater than 40.44%. 
However in Table 4, the mean and variance of each histogram in Figs. 5f-5j correspond 
sequentially to the mean and variance of each plain image in Figs. 4f-4j. And Table 4 shows 
the differences between the cipher images and uniformly distributed image in both mean and 
variance are fairly small, and the maximum relative error of variance is less than 0.39%. 
These demonstrate that the histograms of cipher images are very close to the uniform 
distribution, so the cipher images can resist the attack based on histogram analysis. 
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5.2.2 Correlation analysis 

In general, plain images have a strong correlation between adjacent pixels. While the image 
encryption algorithm will destroy the correlation seriously to make the adjacent pixels in 
ciphered images completely irrelevant. The correlation coefficient is usually used to measure 
the correlation between adjacent pixels of images. Assume that randomly select K pairs of 
adjacent pixels from the image, and denote their values by (ui,vi), i=1,2,...,K, then the 
correlation coefficient r can be calculated with the following formula. 

𝑟 = ∑ (𝑢𝑖−E(𝒖))(𝑣𝑖−E(𝒗))𝐾
𝑖=1

�∑ (𝑢𝑖−E(𝒖))2𝐾
𝑖=1 ∑ (𝑣𝑖−E(𝒗))2𝐾

𝑖=1

                             (47) 

Where, E(u) and E(v) are separately the mean values of sequences {ui} and {vi}, i=1,2,...,K. 
From Eq. (47), when r gets close to 1 or -1, the correlation gets strong; when r gets close to 0, 
the correlation gets weak; when r=0, there is no correlation between u and v. 
   Without loss of generality, take the plain images Figs. 4a-4e and their corresponding 
cipher images Figs. 4f-4j as examples to discuss the correlation issue. Here, let K=2000, and 
then from the tested images randomly select K pairs of adjacent pixels in horizontal, vertical, 
diagonal and counter-diagonal directions respectively to calculate the correlation coefficients, 
and list the results in Table 5. 
 

Table 5. Results of correlation coefficients. 
Image Horizontal Vertical Diagonal Counter-diagonal 

Lena 
Plain (Fig. 4a) 0.96572 0.93161 0.91500 0.93761 
Cipher (Fig. 4f) 0.00070 -0.01385 0.00020 0.01186 

Baboon 
Plain (Fig. 4b) 0.84340 0.87903 0.78298 0.80757 

Cipher (Fig. 4g) 0.00438 -0.00261 0.00135 0.00883 

Pepper 
Plain (Fig. 4c) 0.97261 0.96512 0.92994 0.93890 

Cipher (Fig. 4h) -0.01168 -0.00033 0.01072 -0.01327 

All-black 
Plain (Fig. 4d) 1.00000 1.00000 1.00000 1.00000 
Cipher (Fig. 4i) -0.00592 0.03098 -0.01783 -0.04287 

All-white 
Plain (Fig. 4e) 1.00000 1.00000 1.00000 1.00000 

Cipher (Fig. 4j) 0.00142 0.01309 -0.00976 -0.00590 
 
   In Table 5, the correlation coefficient of each plain image is close to 1 (and both 
All-black and All-white images are linearly correlated, and their correlation coefficients are 
both 1), i.e. the adjacent pixels in plain images have a strong positive correlation. However, 
the correlation coefficient of each cipher image is close to 0, i.e. the adjacent pixels in cipher 
images are approximately uncorrelated. Therefore, Table 5 shows that the proposed image 
encryption algorithm completely removes the correlation between adjacent pixels in the 
original images. 
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   To visually compare the correlation characteristics between plain and cipher images, Fig. 
6 illustrates the correlations of Fig. 4a (i.e. Lena) and Fig. 4f (i.e. Lena's cipher image) both 
in horizontal direction. In Fig. 6a, 2000 pairs of selected adjacent pixels of Lena in 
horizontal direction are concentrated nearby the line of y=x, while, in Fig. 6b, 2000 pairs of 
selected adjacent pixels of Lena's cipher image in horizontal direction are dispersed in the 
whole phase portrait. Thereby, Fig. 6 shows that the proposed image encryption algorithm 
effectively eliminates the correlation between adjacent pixels in the original images. 

5.2.3 Information entropy analysis 

The information entropy of an image reflects the uncertainty of the image information. For 
an 8-bit grayscale image with occurrence frequency p(i) for gray value i, its information 
entropy H is described as follows. 
 

𝐻 = −∑ 𝑝(𝑖)log2𝑝(𝑖)255
𝑖=0                                   (48) 

 

                            (a)                        (b) 
Fig. 6. The correlation between adjacent pixels in horizontal direction. (a) Case of 

Lena (Fig. 4a); (b) Case of Lena's cipher image (Fig. 4f) 
 

   Obviously, an 8-bit grayscale random image has the maximum uncertainty, and its 
information entropy gets to the maximum value of 8 bits. Generally, the information 
entropies of images with visual information are obviously less than 8 bits. Whereas the 
information entropies of cipher images are expected to be close to 8 bits. Here, the 
information entropies of the plain images Lena, Baboon, Pepper, All-black and All-white 
(see Figs. 4a-4e, respectively) and their corresponding cipher images (see Figs. 4f-4j, 
respectively) are separately calculated with Eq. (48), and the results are listed in Table 6.  
 

Table 6. Information entropies of plain and cipher images (unit: bit) 
 Lena Baboon Pepper All-black All-white 

Plain image 7.36848 7.35572 7.56456 0 0 
Cipher image 7.99734 7.99732 7.99663 7.99673 7.99735 
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   In Table 6, the information entropies of Lena, Baboon and Pepper are all less than 8 bits 
with the minimum relative error of 5.44%, and the information entropies of All-black and 
All-white are both 0. Whereas the information entropies of cipher images are all close to 8 
bits with the maximum relative error of 0.042%. These demonstrate that the cipher images 
are similar to  noise-like images hiding the visual information perfectly. 

5.3 Sensitivity analysis 

In general, the sensitivity analysis of image cryptosystem includes three aspects, i.e. secret 
key sensitivity analysis, plaintext sensitivity analysis and cipher-text sensitivity analysis. 
Moreover, in the proposed cryptosystem, the initial values of Chen's system are regarded as 
public key, so the public key sensitivity analysis is also discussed in this part. 
   Two important indicators, known as NPCR and UACI [26], are widely used in the 
sensitivity analysis. NPCR (number of pixels change rate) measures the number of different 
pixels between two same sized images. And UACI (unified average changing intensity) 
measures the degree of difference between two same sized images. Assume that two M×N 
sized images are denoted by I1 and I2, respectively, then NPCR and UACI can be calculated 
by the following formulae. 

NPCR(𝑰1, 𝑰2) = 1
𝑀𝑁

∑ ∑ |Sign(𝑰1(𝑖, 𝑗) − 𝑰2(𝑖, 𝑗))| × 100%𝑁
𝑗=1

𝑀
𝑖=1            (49) 

Where, Sign(x) is the sign function, which returns 1 if x>0, 0 if x=0, or -1 if x<0.  

UACI(𝑰1, 𝑰2) = 1
𝑀𝑁

∑ ∑ |𝑰1(𝑖,𝑗)−𝑰2(𝑖,𝑗)|
255−0

× 100%𝑁
𝑗=1

𝑀
𝑖=1                  (50) 

   For two random images of the same size, the expected values of NPCR and UACI are 
99.6094% and 33.4635%, respectively. If an image is one of the Figs. 4a-4e and the other is 
a random image of the same size, the expected values of NPCR and UACI are as shown in 
Table 7. 
 

Table 7. The expected values of NPCR and UACI between a random image R and a plain image 

Index 
R and Lana 

(Fig. 4a) 
R and Baboon 

(Fig. 4b) 
R and Pepper 

(Fig. 4c) 

R and 
All-black (Fig. 

4d) 

R and All-white 
(Fig. 4e) 

NPCR 99.6094% 99.6094% 99.6094% 99.6094% 99.6094% 
UACI 28.6850% 27.9209% 30.9134% 50.0000% 50.0000% 

5.3.1 Secret key sensitivity 

Secret key sensitivity investigates that the influence of tiny changes of secret keys on the 
ciphered images in encryption system or on the recovered images in decryption system. 
Excellent image cryptosystem must have a good sensitivity on secret keys, i.e. the tiny 
changes of each secret key will lead to completely different resultant images both in 
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encryption and decryption systems. 
   The secret key sensitivity analysis includes two cases, i.e. the key sensitivity analysis of 
the encryption system and the key sensitivity analysis of the decryption system. 
   The process of key sensitivity analysis of the encryption system is as follows: Firstly, 
randomly generate a secret key of length 256 bits, and then randomly change its value by 1 
bit to get a new key. Secondly, encrypt one plain image with these two keys to get two 
corresponding cipher images. Thirdly, calculate the values of NPCR and UACI between 
these two cipher images. Finally, repeat the test for 100 times to calculate the average values 
of NPCR and UACI, and then list the results in Table 8. 
   The process of key sensitivity analysis of the decryption system is as follows: Firstly, 
randomly generate a secret key of length 256 bits, denoted by K1. And then use K1 to encrypt 
a plain image P1 to get its corresponding cipher image C1. Secondly, randomly change the 
key K1 by 1 bit to get a new key, denoted by K2. Thirdly, use the key K2 to decrypt the cipher 
image C1 to get the recovered image, denoted by P2. Fourthly, calculate the values of NPCR 
and UACI between P1 and P2. Finally, repeat the test for 100 times to calculate the average 
values of NPCR and UACI, and then list the results in Table 9. 
   Here, without loss of generality, the images in Figs. 4a-4e (i.e. Lena, Baboon, Pepper, 
All-black and All-white images, respectively) are used as the tested images, and the initial 
values of Chen's system (i.e. public key) are set to (x0, y0, z0)=(-8.319, 12.0456, 36.789). 
 

Table 8. Secret key sensitivity of the encryption system (unit: %). 
Index Lean Baboon Pepper All-black All-white Theoretical 
NPCR 99.6067 99.6100 99.6108 99.6081 99.6044 99.6094 
UACI 33.4542 33.4541 33.4702 33.4598 33.4750 33.4635 

 
Table 9. Secret key sensitivity of the decryption system (unit: %). 

Index 
Lena Baboon Pepper All-black All-white 

Tested Theor. Tested Theor. Tested Theor. Tested Theor. Tested Theor. 

NPCR 99.6097 99.6094 99.6107 99.6094 99.6087 99.6094 99.6082 99.6094 99.6071 99.6094 

UACI 28.6907 28.6850 27.9199 27.9209 30.9108 30.9134 50.0086 50.0000 49.9978 50.0000 

 
   Tables 8-9 show the tested values of NPCR and UACI are both close to their theoretical 
values with the maximum relative error of 0.034% in both encryption and decryption 
systems, thereby indicating that the proposed cryptosystem possesses a strong sensitivity on 
secret keys. 

5.3.2 Plaintext sensitivity 

The plaintext sensitivity measures the degree of influence of tiny changes in plain images on 
the image encryption system. Excellent image encryption system must have a good plaintext 
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sensitivity, i.e. the tiny changes of each plain image inputted into the image encryption 
system will cause two completely different encrypted images. 
   Here, the images in Figs. 4a-4e (i.e. Lena, Baboon, Pepper, All-black and All-white 
images, respectively) are taken as examples in the plaintext sensitivity test. Firstly, make 
slight change for each plain image (i.e. change its one random pixel's value by 1) to obtain 
one pair of images with only one different pixel. Secondly, encrypt these two images with 
the proposed image encryption system (using the identical secret key) to obtain their 
corresponding cipher images. Thirdly, use these two resultant images to calculate the values 
of NPCR and UACI. Finally, repeat this test for 100 times to calculate the average values of 
NPCR and UACI, which are listed in Table 10. In each test, the secret key is randomly 
selected, and the initial values of Chen's system (i.e. public key) are set to (x0, y0, z0)=(-8.319, 
12.0456, 36.789). 
 

Table 10. Results of plaintext sensitivity test (unit: %). 
Index Lean Baboon Pepper All-black All-white Theoretical 
NPCR 99.6078 99.6017 99.6092 99.6075 99.6087 99.6094 
UACI 33.4476 33.4395 33.4552 33.4653 33.4598 33.4635 

 
   As can be seen in Table 10, the calculated results of NPCR and UACI are fairly close to 
their theoretical values with the maximum relative error of 0.072%, thereby showing that the 
proposed image encryption system has a strong plaintext sensitivity. 

5.3.3 Cipher-text sensitivity 

The plaintext sensitivity measures the sensitivity of image encryption system, while the 
cipher-text sensitivity measures the sensitivity of image decryption system. Excellent image 
decryption system must have a strong cipher-text sensitivity, i.e. the tiny changes in cipher 
images will lead to that the decrypted images completely different form the original plain 
images. 
   Here, take the images of Figs. 4a-4e (i.e. Lena, Baboon, Pepper, All-black and All-white 
images, respectively) as the tested images. Firstly, encrypt the images of Figs. 4a-4e with the 
proposed image encryption system to get their corresponding cipher images. Secondly, make 
slight change for each cipher image (i.e. change its one random pixel's value by 1) to obtain 
one pair of images with only one different pixel. Thirdly, decrypt this pair of images with the 
proposed image decryption system (using the same secret key as that used in the encryption 
system) to obtain the original plain image and one decrypted image. Finally, use these two 
resultant images to calculate the values of NPCR and UACI. Repeat this test for 100 times to 
calculate the average values of NPCR and UACI, and then list the results in Table 11. Note 
that in each test the secret key is randomly selected, and the initial values of Chen's system 
(i.e. public key) are set to (x0, y0, z0)=(-8.319, 12.0456, 36.789). 
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Table 11. Results of cipher-text sensitivity test (unit: %). 

Index 
Lena Baboon Pepper All-black All-white 

Tested Theor. Tested Theor. Tested Theor. Tested Theor. Tested Theor. 

NPCR 99.6069 99.6094 99.6083 99.6094 99.6107 99.6094 99.6130 99.6094 99.6062 99.6094 

UACI 28.6877 28.6850 27.9256 27.9209 30.9091 30.9134 50.0209 50.0000 49.9903 50.0000 

 
   In Table 11, the calculated values of NPCR and UACI are approximately equal to their 
theoretical values with the maximum relative error of 0.072%, which shows that the 
proposed image decryption system has a strong cipher-text sensitivity. 
 

5.3.4 Public key sensitivity 

In the proposed image cryptosystem, Chen's system is used to generate the key streams. The 
three initial values of Chen's system (x0, y0, z0) are open and serve as the public key. The 
ranges of (x0, y0, z0) are slightly smaller than the state space of Chen's system. Here, let 
x0∈[-19.23,24.27], y0∈[-21.03,27.47], z0∈[6.86,44.00], and their step sizes be all 10-13.  
   In the public key sensitivity test, randomly generate a public key (i.e. (x0, y0, z0)), and 
change one element of the public key by 10-13 while keeping the other two elements 
unchanged to obtain the slightly changed public key. Then, use these two slightly different 
public keys separately as the initial values of Chen's system to generate two key streams (i.e. 
two sets of {X, Y, Z, r1, r2, r3}). Employ the two key streams in the encryption/decryption 
system to get two resultant images, and calculate the values of NPCR and UACI between the 
resultant images. Finally, repeat the test for 100 times to get the average values of NPCR and 
UACI, and list the results in Tables 12-13. Note that in each test a random secret key is used. 
 

Table 12. Public key sensitivity of image encryption system (unit: %). 
Index Lean Baboon Pepper All-black All-white Theoretical 

x0 
NPCR 99.6107 99.6117 99.6095 99.6117 99.6096 99.6094 
UACI 33.4678 33.4638 33.4670 33.4538 33.4639 33.4635 

y0 
NPCR 99.6085 99.6071 99.6105 99.6048 99.6100 99.6094 
UACI 33.4735 33.4506 33.4627 33.4738 33.4638 33.4635 

z0 
NPCR 99.6125 99.6118 99.6100 99.6102 99.6098 99.6094 
UACI 33.4568 33.4704 33.4637 33.4534 33.4597 33.4635 

 
 
 
 
 



4506                         Yong Zhang et al.: The fast image encryption algorithm based on substitution and diffusion 

Table 13. Public key sensitivity of image decryption system (unit: %). 

Index 
Lena Baboon Pepper All-black All-white 

Tested Theor. Tested Theor. Tested Theor. Tested Theor. Tested Theor. 

x0 
NPCR 99.6147 99.6094 99.6068 99.6094 99.6133 99.6094 99.6122 99.6094 99.6104 99.6094 

UACI 28.6842 28.6850 27.9178 27.9209 30.8929 30.9134 50.0157 50.0000 50.0110 50.0000 

y0 
NPCR 99.6022 99.6094 99.6120 99.6094 99.6051 99.6094 99.6052 99.6094 99.6077 99.6094 

UACI 28.6860 28.6850 27.9270 27.9209 30.9177 30.9134 49.9780 50.0000 49.9840 50.0000 

z0 
NPCR 99.6106 99.6094 99.6075 99.6094 99.6061 99.6094 99.6120 99.6094 99.6052 99.6094 

UACI 28.6843 28.6850 27.9226 27.9209 30.9039 30.9134 49.9843 50.0000 49.9942 50.0000 

 
   Tables 12-13 reflect the degree of influence of small changes of public key on the 
encryption and decryption systems. In Tables 12-13, the calculated values of NPCR and 
UACI are very close to their theoretical values, i.e. the proposed image cryptosystem have a 
strong sensitivity on public keys. These also say that one can arbitrarily choose a public key 
in the public key space. 

5.4 Encryption and decryption speed 

The computer in Section 4 and C# program are used to test the encryption and decryption 
speed of proposed image cryptosystem. If the time of encrypting/decrypting an image of size 
M×N is denoted by t1 or t2 seconds respectively, then the encryption/decryption speed is 
8MN/t1 or 8MN/t2 bps respectively. If the time of generating key streams for M×N sized 
image is denoted by t3 seconds, then the speed of key stream generating is 8MN/t3 bps. Here, 
take the 8-bit grayscale image Lena of size 256×256 pixels as an example, and list the tested 
results in Table 14. 
 

Table 14. Encryption/Decryption speed of proposed system. 

 
Key stream 
generator 

Encryption 
process 

Decryption 
process 

Key stream 
generator + 
encryption 

process 

Key stream 
generator + 
decryption 

process 
Time (ms) 27.309 14.972 16.026 42.281 43.335 

Speed 
(Mbps) 

- 35.018 32.715 12.400 12.098 

 
   In general, once the secret key is established between two communication sides, it will 
be used for a period of time, so the encryption/decryption speed of proposed cryptosystem in 
Table 14 is referred to 35.018 Mbps or 32.715 Mbps, respectively. While the 
encryption/decryption speed of proposed system containing the key stream generator is 
separately 12.400 Mbps or 12.098 Mbps and is equivalent to the speed of one-time pad, 
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which is the speed for the brute-force attacking the system once. Therefore, if the computer 
used in Section 4 is employed to crack the proposed encryption/decryption system by the 
brute-force attack method, half of the key space will be tried out and at least 7.7622×1067 or 
7.9557×1067 years will be required respectively. So, the proposed system can combat the 
exhaustive attack. 

5.5 Comparative analysis 

In order to prove that the proposed image cryptosystem has excellent performance, the 
proposed system is compared with AES (in CBC mode) and those systems described in Refs. 
[27-29]. All these systems can produce the cipher images with excellent statistical 
characteristics, so the compared items are limited to the encryption/decryption speed, secret 
key sensitivity, plaintext sensitivity and cipher-text sensitivity. And the comparison results 
are listed in Table 15. Note that (1) the 8-bit grayscale image Lena of size 256×256 pixels 
is used; (2) the speed of  each image encryption/decryption system excludes that of key 
stream generator; (3) the scheme of AES uses a secret key of length 256 bits [25]; (4) the 
scheme in [27] uses a secret key of length 256 bits; (5) the scheme in [28] uses three 
double-precision floating-point numbers as the secret key (equivalent to the key length of 
140 bits); (6) the scheme in [29] uses four double-precision floating-point numbers as the 
secret key (equivalent to the key length of 186 bits); (7) the values of NPCR and UACI are 
the average values of 100 tests. 
 

Table 15. Results of comparative analysis 

Image 

cryptosystem 

Enc. 

speed 

(Mbps) 

Dec. 

speed 

(Mbps) 

Secret key sensitivity (%) Plaintext 

sensitivity (%) 

Cipher-text 

sensitivity (%) Enc. process Dec. process 

NPCR UACI NPCR UACI NPCR UACI NPCR UACI 

Theoretical - - 99.6094 33.4635 99.6094 28.6850 99.6094 33.4635 99.6094 28.6850 

AES 7.2496 6.6223 99.6095 33.4564 99.5996 28.6531 99.6049 33.4798 99.6079 28.6853 

Ref. [27] 36.587 35.223 75.7019 25.4295 86.6635 24.8754 99.5988 33.0621 0.0245 0.0001 

Ref. [28] 137.862 2.967 98.2652 33.0074 98.2919 27.8255 0.0015 0.0005 0.0015 0.0004 

Ref. [29] 0.068 0.068 99.6170 33.4531 99.4099 22.7641 99.5879 33.4334 99.6132 28.5904 

Proposed 35.018 32.715 99.6067 33.4542 99.6097 28.6907 99.6078 33.4476 99.6069 28.6877 

(Note: In Table 15, 'Enc.' and 'Dec.' are separately the abbreviations of 'Encryption' and 'Decryption'. ) 
 
   From Table 15, the encryption and decryption speeds of AES are separately 7.2496 and 
6.6223 Mbps. If the encryption and decryption speeds of AES are taken as two thresholds, 
the speed of scheme in [29] is too slow, and the decryption speed of scheme in [28] is also 
slow (although its encryption speed is very fast). The speeds of both proposed scheme and 
the scheme in [27] are faster than the thresholds so as to meet the speed requirement. 
 



4508                         Yong Zhang et al.: The fast image encryption algorithm based on substitution and diffusion 

   In fact, the scheme in [28] is essentially a one-time pad system using RSA technology to 
complete the secret key exchange for each secure communication. So the scheme in [28] has 
no plaintext and cipher-text sensitivities as shown in Table 15, and cannot resist the 
known/chosen plaintext attacks. From Table 15, the scheme in [27] has no cipher-text 
sensitivity, which is a defect in resisting the known/chosen cipher-text attacks. The scheme in 
[29] uses SHA-3 technology and possesses excellent sensitivities as shown in Table 15, but 
with very slow encryption/decryption speed, which limits its application. Like the scheme in 
[29], the proposed scheme also possesses excellent sensitivities. 
   So in the five schemes listed in Table 15, only the proposed scheme has the best 
comprehensive performance. 

6. Conclusion 

Unlike most of recent image cryptosystems based on confusion-diffusion architecture, this 
paper proposed an image cryptosystem based on substitution-diffusion architecture. The 
substitution algorithm "removes" the information of original image from the encrypted 
images, so that the useful information of plain image can be hidden better. Combining the 
substitution algorithm with the diffusion processes, the proposed scheme makes the changes 
of each pixel in the plain image affect the whole cipher image. Simulation results show that 
the proposed image cryptosystem has the characteristics of fast encryption/decryption speed 
and strong sensitivities. So the proposed system can be used as an alternative scheme for the 
real network communication. 
   The substitution technology is widely used in data cryptography. This paper used the 
S-Box of AES to carry out substitution operation and achieved satisfactory security results. 
In the proposed scheme, two diffusion processes are used to get the excellent 
plain/cipher-text sensitivity, which cost a lot of time. The future work will focus on studying 
the image scheme with new substitution algorithm and only one diffusion process, so as to 
further improve the encryption/decryption speed without affecting the system security. 
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