References
- Zhang, E.; Zhang, X.; Jiao, L.; Li, L.; Hou, B. "Spectral-spatial hyperspectral image ensemble classification via joint sparse representation," Pattern Recognition, vol. 59, pp. 42-54, 2016. https://doi.org/10.1016/j.patcog.2016.01.033
- Bruzzone, L.; Chi, M.; and Marconcini, M. "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, pp. 3363-3373, 2006. https://doi.org/10.1109/TGRS.2006.877950
- Zhong, Y.; Lin, Y.; and Zhang, L. "A support vector conditional random classifier with a Mahalanobis distance boundary constraint for high spatial resolution remotes sensing imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, pp.1314-1333, 2014.
- Hao S, Wang W, Yan Y, et al. "Class-wise dictionary learning for hyperspectral image classification," Neurocomputing, vol. 220, pp. 121-129, 2017. https://doi.org/10.1016/j.neucom.2016.05.101
- Krishnapuram, B.; Carin, L.; Figueiredo,M.; and Hartemink, A. "Sparse multinomial logistic regression: Fast algorithms and generalization bounds," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 27, pp. 957-968, 2005. https://doi.org/10.1109/TPAMI.2005.127
- Li,J.; Bioucas-Dias, J. M.; and Plaza, A. "Semi-supervised hyperspectral image classification using soft sparse multinomial logistic regression," IEEE Geosci. Remote Sens. Lett., vol. 10, pp. 318- 322, 2013. https://doi.org/10.1109/LGRS.2012.2205216
- Du B.; Zhang L.; Chen T.; Wu, K. "A discriminative manifold learning based dimension reduction method for hyperspectral classification," International J Fuzzy Syst., vol. 14, pp.272-277, 2012.
- Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. "Locality-Preserving Dimensionality Reduction and Classification for Hyperspectral Image Analysis," IEEE Transactions on Geoscience & Remote Sensing, vol. 50, pp.1185-1198, 2012. https://doi.org/10.1109/TGRS.2011.2165957
- Chen, Y.N.; Hsieh, C.T.; Wen, M. G.; Han, C.C.; Fan, K.C. "A Dimension Reduction Framework for HSI Classification Using Fuzzy and Kernel NFLE Transformation," Remote Sensing, vol. 7, pp. 14292-14326, 2015. https://doi.org/10.3390/rs71114292
- Song, X.F.; Jiao, L.C.; Yang, S.Y.; Zhang, X. R.; Shang, F.H. "Sparse coding and classifier ensemble based multi-instance learning for image categorization," Signal Process. vol. 93, pp.1-11, 2013. https://doi.org/10.1016/j.sigpro.2012.07.029
- Ham,J.; Chen; Y.C.; Crawford, M.M.; Ghosh, J. "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens. vol. 43, pp. 492-501, 2005. https://doi.org/10.1109/TGRS.2004.842481
- Wright, J., Yang, A.Y.; Ganesh, A.; Sastry, S.; and Ma, Y. "Robust face recognition via sparse representation," IEEE Trans. Pattern Anal. Mach.Intell, vol. 31, pp.210-227, 2009. https://doi.org/10.1109/TPAMI.2008.79
- Mairal,J.; Elad, M.; Sapiro, G. "Sparse representation for color image restoration," IEEE Trans. Image Process. vol. 17, pp. 53-69, 2008. https://doi.org/10.1109/TIP.2007.911828
- Nasrabadi, N. M. "Hyperspectral Target Detection : An Overview of Current and Future Challenges," IEEE Signal Process. Mag., vol. 31, pp. 34-44, 2013 .
- Moayedi, F.; Azimifar, Z.; Boostani, R. "Structured sparse representation for human action recognition," Neuro computing, vol. 161, pp. 38-46, 2015.
- Ma, W.K.;Bioucas-Dias, J.M.; Chan,T.H.; Gillis, N.; Gader, P.; Plaza,A.J.; Ambikapathi, A.; Chi, C.Y. "A signal processing perspective on hyperspectral unmixing," IEEE Signal Process. Mag. vol. 31, pp. 67-81, 2014. https://doi.org/10.1109/MSP.2013.2279731
- Chen, Y.; Nasrabadi, N.M.; Tran, T. D. "Hyperspectral image classification using dictionary-based sparse representation," IEEE Geosci. Remote Sens. vol. 49, pp.3973-3985, 2011. https://doi.org/10.1109/TGRS.2011.2129595
- Chen,Y.; Nasrabadi,N. M.; Tran T. D. "Hyperspectral image classification via kernel sparse representation," IEEE Geosci. Remote Sens," vol. 51, pp. 217-231, 2013. https://doi.org/10.1109/TGRS.2012.2201730
- Zhang, H.Y.; Li, J.Y.; Huang, Y.C.; Zhang, L.P. "A nonlocal weighted joint sparse representation classification method for hyper-spectral imagery," IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. vol. 7, pp.2056-2065, 2014. https://doi.org/10.1109/JSTARS.2013.2264720
- Peng J, Du Q. Robust Joint Sparse Representation Based on Maximum Correntropy Criterion for Hyperspectral Image Classification. IEEE Transactions on Geoscience & Remote Sensing, PP(99):1-13, 2017.
- Fang, L.Y.; Li, S.T.; Kang, X.D.; Benediktsson, J.A. "Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation," IEEE Trans. Geosci. Remote Sens. vol.52, pp.7738-7749, 2014. https://doi.org/10.1109/TGRS.2014.2318058
- Fang, L.Y.; Li, S.; Duan, W.; Ren, J. "Classification of Hyperspectral Images by Exploiting Spectral Spatial Information of Superpixel via Multiple Kernels," IEEE Trans. Geosci. Remote Sens. 2015, vol. 53, pp.6663-6674. https://doi.org/10.1109/TGRS.2015.2445767
- Fang L.Y., Li S.; Kang X.; Benediktsson, J.A. "Spectral-Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model," IEEE Trans. Geosci. Remote Sens. vol. 53, pp.4186-4201, 2015. https://doi.org/10.1109/TGRS.2015.2392755
- Peng, J.; Luo, T. "Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification," Signal, Image and Video Processing, vol.10, pp.1-8, 2016. https://doi.org/10.1007/s11760-014-0693-9
- Zhai, Y.; Zhang, L.; Wang N.; Guo, Y. "A Modified Locality-Preserving Projection Approach for Hyperspectral Image Classification," IEEE Trans. Geosci. Remote Sens. Lett., vol. 13, pp. 1-5, 2016. https://doi.org/10.1109/LGRS.2015.2509518
- Li X, Liu K, Dong Y. "Superpixel-Based Foreground Extraction with Fast Adaptive Trimaps," IEEE Transactions on Cybernetics, PP(99):1-11, 2017.
- Sima H, Guo P. "Texture superpixels merging by color-texture histograms for color image segmentation," Ksii Transactions on Internet & Information Systems, 8(7):2400-2419, 2014. https://doi.org/10.3837/tiis.2014.07.011
- Dong Y, Tao D, Li X, et al. "Texture Classification and Retrieval Using Shearlets and Linear Regression," IEEE Transactions on Cybernetics, 45(3):358-369, 2015. https://doi.org/10.1109/TCYB.2014.2326059
- Li X, Kang L, Dong Y, et al. Patch Alignment Manifold Matting. "IEEE Trans Neural Netw Learn Syst, " PP(99):1-13, 2017.
- Huang, H.; Yang, M. "Dimensionality Reduction of Hyperspectral Images With Sparse Discriminant Embedding," IEEE Trans. Geosci. Remote Sens., vol. 53, pp. 5160-5169, 2015. https://doi.org/10.1109/TGRS.2015.2418203
- Felzenszwalb, P.F.; Huttenlocher, D. P. "Efficient Graph-Based Image Segmentation. Internation al Journal of Computer Vision," Int. J. comput. vis., vol. 59, pp. 167-181, 2004.
- Comaniciu,D.; Meer, P. "Mean shift: a robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach.Intell., vol.24, pp. 603-619, 2002. https://doi.org/10.1109/34.1000236
- Achanta, R.; Shaji,A.; Smith, K.; Lucchi, A.; Fua, P.; SuSstru, S. "SLIC superpixels compared to state-of-the-art superpixel methods," IEEE Trans. Pattern Anal. Mach.Intell. vol. 34, pp. 2274-2282, 2012. https://doi.org/10.1109/TPAMI.2012.120
- Yuan, X.T.; Liu, X.; Yan, S. "Visual classification with multitask joint sparse representation". IEEE Transaction on Image Process, vol. 21, pp. 4349-4360, 2015.
- Duarte,M. F.; Sarvotham ,S.; Baron, D.; Wakin, M.B. "Distributed Compressed Sensing of Jointly Sparse Signals," in Proc. of Proceedings of the IEEE Conference of the Thirty-Ninth Asilomar Conference On signals, Systems and Computers, pp. 1537-1541, 2005.
- Hu, Z.P.; Bai, F.; Zhao; S.H.; Wang, M.; Sun, Z. "Extended common molecular and discriminative atom dictionary based sparse representation for face recognition," J of Vis. Commun. Image R., vol. 40, pp.42-50, 2016. https://doi.org/10.1016/j.jvcir.2016.05.019
- Richards J .A., Jia X. P., Richards J A. "In Remote sensing digital image analysis: an introduction," Remote sensing digital image analysis, vol. 40, pp.47-54. 2016.
- Tropp, J.; Gilbert, A. "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, vol. 53, pp. 4655-4666, 2007. https://doi.org/10.1109/TIT.2007.909108
- Chang S F, Wu X M, Li Z. "Segmentation using superpixels: A bipartite graph partitioning approach," in Proc. of Proceedings of the IEEE Conference of the Computer Vision and Pattern Recognition, June, pp. 789-796, 2012.
- Smith L. I. "A Tutorial on Principal Components Analysis," Information Fusion, vol. 51, 52, 2002.
- Töksoz, M.A.; Ilkay Ulusoy. "Hyperspectral Image Classification via Basic Thresholding Classifier," IEEE Trans. on Geosci. Remote Sens., vol.54, pp. 4039-4051, 2016. https://doi.org/10.1109/TGRS.2016.2535458
- Tropp J A. "Algorithms for simultaneous sparse approximation: part II: Convex relaxation[M]," Elsevier North-Holland, Inc. 2006.