DOI QR코드

DOI QR Code

소셜미디어 데이터를 활용한 태안해안국립공원 방문객의 경관인식 파악 - 꽃지해수욕장·신두리해안사구·만리포해수욕장을 대상으로 -

Identifying Landscape Perceptions of Visitors' to the Taean Coast National Park Using Social Media Data - Focused on Kkotji Beach, Sinduri Coastal Sand Dune, and Manlipo Beach -

  • 이성희 (서울대학교 협동과정조경학) ;
  • 손용훈 (서울대학교 환경대학원)
  • Lee, Sung-Hee (Interdisciplinary Program in Landscape Architecture, Seoul National University) ;
  • Son, Yong-Hoon (Graduate School of Environment Studies, Seoul National University)
  • 투고 : 2018.09.06
  • 심사 : 2018.10.04
  • 발행 : 2018.10.31

초록

실제 이용자의 경험을 파악하는 것은 경관관리에 있어서 중요한 관점 중 하나이다. 본 연구는 이점에서 착안하여 블로그 글을 대상으로 텍스트마이닝을 활용하여 이용자들이 자발적으로 올린 글을 바탕으로 그 안에 담긴 경관인식을 파악하였다. 연구 대상지는 태안해안국립공원으로 하였다. '태안 여행'으로 검색하여 나타난 장소는 대부분 태안해안국립공원에 해당되는 곳이었고, 도출된 장소 중 상위 세 곳을 대상으로 에고네트워크 분석을 실시하고, 각 장소 명칭과 연결된 경관인식에 관련한 키워드(장소, 이미지, 활동, 경관대상물)를 추출하였다. 마지막으로, 중심성 분석과 응집성 분석을 통해 각 장소에 대한 사람들의 경관인식과 주요이슈를 도출하고 의미를 해석하였다. 연구결과로 태안 여행에서 인지되는 주요 장소, 그리고 구체적인 장소에서의 개별적인 경관체험과 경관인식을 파악할 수 있었다. 꽃지해수욕장은 장소 관련 키워드가, 신두리해안사구는 경관이미지에 대한 키워드가, 그리고 만리포해수욕장은 경관요소와 관련된 키워드가 주로 나타나고 있어, 방문객이 인식하는 세 장소의 경관 특성이 상이함을 유추할 수 있다. 구체적으로는 꽃지해수욕장은 일몰경관 감상의 명소이자 태안해안국립공원 트래킹 코스의 거점으로서 인식되고 있으며, 신두리해안사구는 비일상적 경관을 보유한 곳이자 생태적으로 가치가 높은 공간으로 보존의 대상으로 인식되고 있는 것으로 나타났다. 마지막으로 만리포해수욕장은 천리포수목원과 인접하고 있어 높은 방문이 이루어지며, 해변 자체의 모습이 인상적인 곳으로 인식되고 있었다. 소셜미디어 데이터는 이용자 관점에서의 분석자료이므로, 전문가의 관점에서 미처 보지 못했던 다양한 내용을 분석할 수 있어서 매우 유용한 자료이다. 본 연구에서는 경관인식 연구에 소셜미디어 데이터를 활용하여 경관대상, 경관이미지, 활동 등의 여러 내용을 종합하여 사람들이 어떻게 경관을 인식하고 향유하는지를 다각적으로 분석하였다. 다만 소셜미디어 데이터는 작성자의 기억과 인식이 증폭되거나 왜곡될 가능성이 있기 때문에, 보다 정확한 분석을 위해서는 추후 현장에서 설문조사 등을 실시하여 본 연구의 결과와 비교, 검증하는 후속 연구가 필요하다.

This study used text mining methodology to focus on the perceptions of the landscape embedded in text that users spontaneously uploaded to the "Taean Travel"blogpost. The study area is the Taean Coast National Park. Most of the places that are searched by 'Taean Travel' on the blog were located in the Taean Coast National Park. We conducted a network analysis on the top three places and extracted keywords related to the landscape. Finally, using a centrality and cohesion analysis, we derived landscape perceptions and the major characteristics of those landscapes. As a result of the study, it was possible to identify the main tourist places in Taean, the individual landscape experience, and the landscape perception in specific places. There were three different types of landscape characteristics: atmosphere-related keywords, which appeared in Kkotji Beach, symbolic image-related keywords appeared in Sinduri Coastal Sand Dune, and landscape objects-related appeared in Manlipo Beach. It can be inferred that the characteristics of these three places are perceived differently. Kkotji Beach is recognized as a place to appreciate a view the sunset and is a base for the Taean Coast National Park's trekking course. Sinduri Coastal Sand Dune is recognized as a place with unusual scenery, and is an ecologically valuable space. Finally, Manlipo Beach is adjacent to the Chunlipo Arboretum, which is often visited by tourists, and the beach itself is recognized as a place with an impressive appearance. Social media data is very useful because it can enable analysis of various types of contents that are not from an expert's point of view. In this study, we used social media data to analyze various aspects of how people perceive and enjoy landscapes by integrating various content, such as landscape objects, images, and activities. However, because social media data may be amplified or distorted by users' memories and perceptions, field surveys are needed to verify the results of this study.

키워드

참고문헌

  1. Bhat, S. S. and S. Milne(2008) Network effects on cooperation in destination website development. Tourism Management 29(6): 1131-1140. https://doi.org/10.1016/j.tourman.2008.02.010
  2. Butler, A. and U. Berglund(2014) Landscape character assessment as an approach to understanding public interests within the European Landscape Convention. Landscape Research 39(3): 219-236. https://doi.org/10.1080/01426397.2012.716404
  3. Cherem, G. J. and B. L. Driver(1983) Visitor employed photography: A technique to measure common perceptions of natural environments. Journal of Leisure Research 15(1): 65-83. https://doi.org/10.1080/00222216.1983.11969541
  4. Cho, S. K. and E. Y. Sung(2012) Discovering and Analyzing Urban Places Using Geo-tagged Internet Photos for Place-oriented Spatial Planning. AURI.
  5. Daniel, B.(2015) Big data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology 46(5): 904-920. https://doi.org/10.1111/bjet.12230
  6. Daume, S., M. Albert and K. von Gadow(2014) Forest monitoring and social media: Complementary data sources for ecosystem surveilance? Forest Ecology and Management 316: 9-20. https://doi.org/10.1016/j.foreco.2013.09.004
  7. Dunkel, A.(2015) Visualizing the perceived environment using crowdsourced photo geodata. Landscape and Urban Planning 142: 173-186. https://doi.org/10.1016/j.landurbplan.2015.02.022
  8. Feldman, R., and I. Dagan(1995) Knowledge discovery in textual databases (KDT). In Proceedings of the First International Conference on Knowledge Discovery and Data Mining. Montreal, Canada, 112-117.
  9. Freeman, L. C.(2008) Social Network Analysis, London: Sage.
  10. Freeman, L.(1979) Centrality in social network: Conceptual Clarification. Social Networks 1: 215-239.
  11. Gan, Q., M. Zhu, M. Li, T. Li, Y. Cao and B. Zhou(2014) Document visualization: An overview of current research. Wiley Interdisciplinary Reviews: Computtional Statistics 6(1): 19-36. https://doi.org/10.1002/wics.1285
  12. George, G., M. R. Haas and A. Pentland(2014) Big data and management. Academy of Management Journal 57(2): 321-326. https://doi.org/10.5465/amj.2014.4002
  13. Guo, J., L. Xu, G. Xiao and Z. Gong(2012) Improving multilingual semantic interoperation in cross-organizational enterprise systems through concept disambiguation. IEEE Transactions on Industrial Informatics 8(3): 647-658. https://doi.org/10.1109/TII.2012.2188899
  14. Guo, L., C. J. Vargo, Z. Pan, W. Ding and P. Ishwar(2016) Big social data analytics in journalism and mass communication: Comparing dictionary-based text analysis and unsupervised topic modeling. Journalism & Mass Communication Quarterly 93(2): 332-359. https://doi.org/10.1177/1077699016639231
  15. Han, J. Y. and H. B. Kim(2017) A study on the awareness of destination image using social network analysis based on big data. Journal of Tourism Sciences 41(8): 91-119.
  16. HanChen, J., Q. MaoShan and L. Peng(2016) Finding academic concerns of the three gorges project based on a topic modeling approach. Ecological Indicators 60: 693-701. https://doi.org/10.1016/j.ecolind.2015.08.007
  17. Hanneman, R. and M. Riddle(2005) Introduction to Social Network Methods. Riverside, CA: University of California.
  18. Hannigan, T.(2015) Close Encounters of the Conceptual Kind: Disambiguating Social Structure from Text. Big Data & Society, July-December 1-6.
  19. Hotho, A., A. Nurnberger and G. Paass(2005) A brief survey of text mining. In Ldv Forum 20(1): 19-62.
  20. Hwang, G. W.(2011) Interpreting Landscape. Seoul National University Press.
  21. Jang, H. M., E. M. Kim and J. W. Lee(2012) The effects of blog writing for self-presentation and preference toward others' blog writingfor self-presentation on interpersonal and social trust: Focusing on the mediating effects of empathic experiences of blog use. Korean Journal of Journalism & Communication Studies 56(2): 48-71.
  22. Kang, M. S.(2016) A Study on Landscape Resource Distribution and Landscape Characteristic Analysis through Utilizing Internet Photos: Focused on Gwanak Natural Park. Master's Thesis, Seoul National University. Korea.
  23. Kaplan, A. M. and M. Haenlein(2010) Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1): 59-68. https://doi.org/10.1016/j.bushor.2009.09.003
  24. Kim, G. T., K. S, Woo and J. H. Suh(2017) Seoul castle street image study by text mining. Proceedings of the Korean Institute of Landscape Architecture Conference 1: 143-143.
  25. Kim, Y. L and Y. H. Son(2017) Difference of place identity perception and landscape preference between residents and tourists in Ihwa-dong mural village. Journal of the Korean Institute of Landscape Architecture 45(1): 105-116. https://doi.org/10.9715/KILA.2017.45.1.105
  26. Knoke, D. and S. Yang(2008) Social Network Analysis. Thousands Oak, CA: Sage.
  27. Lee, H. J., D. I. Lee and J. H. Lee(2010) Development of franchise education program through semantic network analysis. Korea Business Review 25(2): 3-25.
  28. Lee, J. H. and H. S. Chung(2014) Producing and consuming landscape images via social media blogs: The case of Seochon, Seoul. Journal of the Korean Urban Geographical Society 17(3): 123-140.
  29. Lee, J. I.(2013) A Study on the Micro-Discourse about Seoul Forest in Personal Media: Focused on Sense of Place. Master's Thesis, Seoul National University. Korea.
  30. Lee, S. H., D. H. Park and M. S. Kim(2018) A study of perceptions of Jeju-Island tourism using social media big data analysis: Before and after the outbreak of ban on Korean entertainer's. Journal of Tourism and Leisure Research 30(2): 55-75. https://doi.org/10.31336/JTLR.2018.05.30.5.55
  31. Lee, S. J. and H. J. Kim(2009) Keyword extraction from news corpus using modified TF-IDF. The Journal of Society for e-Business Studies 14(4): 59-73.
  32. Lee, T. W. and T. H. Hong(2015) Terms based sentiment classification for online review using support vector machine. Information Systems Review 17(1): 49-64. https://doi.org/10.14329/isr.2015.17.1.049
  33. Liu, Z., Y. Yin, W. Liu and M. Dunford(2015) Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis, Scientometrics 103(1): 135-158. https://doi.org/10.1007/s11192-014-1517-y
  34. Matthies, B. and A. Corners(2015) Computer-aided text analysis of corporate disclosures-demonstration and evaluation of two approaches. The International Journal of Digital Accounting Research 15: 69-98. https://doi.org/10.4192/1577-8517-v15_3
  35. Moreno, A. and T. Redondo(2015) Text analytics: The convergence of big data and artificial intelligence. International Journal of Interactive Multimedia and Artificial Intelligence 3(6): 57-64. https://doi.org/10.9781/ijimai.2015.327
  36. Oh, I. K., T. S. Lee and C. N. Chon(2015) A study on awareness of Korea tourism through big data analysis. Journal of Tourism Sciences 39(10): 107-126.
  37. Oteros-Rozas, E., B. Martin-Lopez, N. Fagerholm, C. Bieling and T. Plieninger(2018) Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecological Indicators 94: 74-86.
  38. Park, M. H. and S. W. Yang(2014) An analysis on the landscape resources and view points in seoul by the internet photos. Seoul Studies 15(1): 51-68.
  39. Park, M. Y. and K. Park(2017) Understanding visitor's recognition of geosites by analyzing Instagram hashtags. Journal of the Geomorphological Association of Korea 24(1): 93-104. https://doi.org/10.16968/JKGA.24.1.93
  40. Popping, R.(2000) Computer-Assisted Text Analysis. Sage.
  41. Prell, C.(2012) Social Network Analysis: History, theory and Methodology. India: Sage.
  42. Ryu, S. Y. and S. W. Yoo(2017) A study on the perceptions and interests of tourists to Gangwon-do: Focusing on social media big data analysis. International Journal of Tourism and Hospitality Research 31(2): 63-81.
  43. Scott, N., R. Baggio and C. Cooper(2007) Network Analysis and Tourism from theory to Practice, Cromwell Press.
  44. Sim, Y. S. and H. B. Kim(2016) A study of destination image and measurement using text mining. Journal of Tourism Sciences 40(7): 221-245. https://doi.org/10.17086/JTS.2016.40.7.221.245
  45. Tenerelli, P., U. Demsar and S. Luque(2016) Crowdsourcing indicators for cultural ecosystem services: A geographically weighted approach for mountain landscapes. Ecological Indicator 64: 237-248. https://doi.org/10.1016/j.ecolind.2015.12.042
  46. van Zanten, B. T., D. B. van Berkel, R. K. Meentemeyer, J. W. Smith, K. F. Tieskens and P. H. Verburg(2016) Continental-scale quantification of landscape values using social media data. Proceedings of the National Academy of Sciences of the United States of America 113(46): 12974-12979. https://doi.org/10.1073/pnas.1614158113
  47. Wang, Z., Y. Jin, Y. Liu, D. Li and B. Zhang.(2018) Comparing social media data and survey data in assessing the attractiveness of Beijing olympic forest park. Sustainability 10(2): 382 https://doi.org/10.3390/su10020382
  48. Warnock, S. and G. Griffiths(2015) Landscape characterisation: The living landscapes approach in the UK. Landscape Research 40(3): 261-278. https://doi.org/10.1080/01426397.2013.870541
  49. White, P. and R. S. Breckenridge(2014) Trade-offs, limitations, and promises of big data in social science research. Review of Policy Research 31(4): 331-338. https://doi.org/10.1111/ropr.12078
  50. Woo, K. S. and J. H. Suh(2016) A study on the contemporary definition of 'GARDEN': Keyword analysis used literature research and big data. Journal of the Korean Institute of Landscape Architecture 44(5): 1-11. https://doi.org/10.9715/KILA.2016.44.5.001
  51. Woo, K. S. and J. H. Suh(2017) Urban landscape image study by text mining and factor analysis: Focused on Lotte World Tower. Journal of the Korean Institute of Landscape Architecture 45(4): 104-117. https://doi.org/10.9715/KILA.2017.45.4.104
  52. Yang, J. Y. and J. Y. Kim(2017) A study on public perception of Wales Millenium Centre architecture using textmining. Journal of Korea Institute of Spatial Design 47: 193-201.
  53. Yoon, Y. I. and J. J. Choi(2018) Analyzing the sustainable factors of attractiveness at tourism destination of film locations through social big data. Journal of Tourism Sciences 42(6): 63-79. https://doi.org/10.17086/JTS.2018.42.6.63.79
  54. Zakir, J., T. Seymour and K. Berg(2015) Big data analytics. Issues in Information Systems 16(2): 81-90.
  55. Zhang, L. and H. J. Yun(2018) Tourism information contents and text networking (focused on formal website of Jeju and Chinese personal blogs). The Journal of the Korea Contents Association 18(1): 19-30. https://doi.org/10.5392/JKCA.2018.18.01.019
  56. http://www.knps.or.kr