DOI QR코드

DOI QR Code

Alteration in plasma chemokine profile in a high-fat diet-induced obesity mouse model

고지방식이로 비만을 유도한 생쥐에서 혈장 케모카인 발현 변화

  • Kim, Dong-Hwan (Human Life Research Center, Dong-A University) ;
  • Cho, Jeong Min (Department of Plastic Surgery, College of Medicine, Dong-A University) ;
  • Seo, Min Joon (Department of Emergency Medicine, College of Medicine, Dong-A University) ;
  • Lim, Ju Hyun (Department of Physiology, College of Medicine, Dong-A University) ;
  • Bae, Hae-Rahn (Human Life Research Center, Dong-A University)
  • 김동환 (동아대학교 휴먼라이프리서치센터) ;
  • 조정민 (동아대학교 의과대학 성형외과학) ;
  • 서민준 (동아대학교 의과대학 응급의학과) ;
  • 임주현 (동아대학교 의과대학 생리학교실) ;
  • 배혜란 (동아대학교 휴먼라이프리서치센터)
  • Received : 2018.08.31
  • Accepted : 2018.10.08
  • Published : 2018.10.31

Abstract

Purpose: Obesity is associated with a dysregulation of metabolic balance and is regarded as a low grade chronic inflammation. Western-style diet and physical inactivity are leading causes of obesity. This study examined the profiles of forty plasma cytokines and chemokines at the same time in the early stages of high-fat diet-induced obesity using a mouse model. Methods: A total of 30 male CD1 mice, 12 ~ 14 weeks of age, were enrolled. The mice were fed a high-fat diet for 6 weeks to induce obesity. The plasma glucose and triglyceride concentrations were measured using a hexokinase colorimetric assay kit and a serum triglyceride determination kit, respectively. The relative levels of multiple cytokines and chemokines in the plasma were determined using a mouse cytokine array kit. Results: The mice exhibited significant weight gain after 6 weeks of a high-fat diet. The genital fat depot was enlarged along with an increase in the number and the mean size of white adipocytes as early as 4 weeks after a high-fat diet. In addition, the plasma glucose and triglyceride levels increased significantly after 4 weeks of a high-fat diet. Cytokine array analysis revealed a remarkable increase in the expression of both CXCL12 and CXCL13, whereas the proinflammatory cytokines remained low after 4 weeks of a high-fat diet. Conclusion: A significant increase in plasma levels of CXCL12 and CXCL13 was observed after 4 weeks of a high-fat diet, which might induce the migration of B lymphocytes, T lymphocytes, and monocytes from the blood to expanding adipose tissue or fat associated lymphoid clusters, playing a key role in adipose tissue remodeling and local immunity during the early stages of high-fat diet-induced obesity.

본 연구에서 고지방식이로 비만을 유도한 생쥐는 식이 4주 후 지방조직의 형태학적 변화가 관찰되었고 생식기 지방조직의 무게가 증가하였으며, 혈장 중성지방 및 혈당치도 현저하게 증가하였다. 고지방식이 6주 후 몸무게의 유의한 증가가 관찰되기 시작하였으며, 뒤다리넙적근과 어깨사이 지방조직의 무게는 감소하고, 생식기 지방조직 및 간의 무게는 증가하였다. 지방조직의 형태학적 변화가 시작되는 고지방식이 유도 4주 후 혈장 내 40종의 시토카인 및 케모카인의 변화를 동시에 관찰하여 대조군과 비교해 본 결과, CXCL12 (SDF-1)와 CXCL13 (BLC)의 발현이 가장 현저하게 증가하였으며, G-CSF의 발현도 다소 증가하였다. 혈장 내 염증성 시토카인의 발현은 전반적으로 낮았다. 이상의 결과를 종합하면 고지방식이 유도 비만 초기에 만성 염증 상태로 진입하기 전 혈장 내 CXCL12와 CXCL13의 발현이 현저히 증가하는 것을 밝혔으며, CXCL12와 CXCL13의 증가로 B 세포, T 세포 및 단핵구가 혈관을 빠져나가 지방조직 및 지방조직 주변 림프조직으로 이동하여 지방조직 재형성과 국소 지방조직 면역에 관여할 것으로 보인다.

Keywords

References

  1. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000; 106(4): 473-481. https://doi.org/10.1172/JCI10842
  2. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd-Jones D, Sowers J. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich) 2013; 15(1): 14-33. https://doi.org/10.1111/jch.12049
  3. De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes 2013; 2013: 291546.
  4. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest 2011; 121(6): 2111-2117. https://doi.org/10.1172/JCI57132
  5. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548-2556. https://doi.org/10.1210/jc.2004-0395
  6. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesityrelated inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013; 2013: 139239.
  7. Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol 2012; 13(8): 707-712. https://doi.org/10.1038/ni.2343
  8. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796-1808. https://doi.org/10.1172/JCI200319246
  9. Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 2010; 88(1): 33-39. https://doi.org/10.1189/jlb.0210072
  10. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117(1): 175-184. https://doi.org/10.1172/JCI29881
  11. Ito A, Suganami T, Yamauchi A, Degawa-Yamauchi M, Tanaka M, Kouyama R, Kobayashi Y, Nitta N, Yasuda K, Hirata Y, Kuziel WA, Takeya M, Kanegasaki S, Kamei Y, Ogawa Y. Role of CC chemokine receptor 2 in bone marrow cells in the recruitment of macrophages into obese adipose tissue. J Biol Chem 2008; 283(51): 35715-35723. https://doi.org/10.1074/jbc.M804220200
  12. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11(11): 762-774. https://doi.org/10.1038/nri3070
  13. Surmi BK, Hasty AH. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol 2008; 3(5): 545-556. https://doi.org/10.2217/17460875.3.5.545
  14. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116(6): 1494-1505. https://doi.org/10.1172/JCI26498
  15. Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 2003; 278(47): 46654-46660. https://doi.org/10.1074/jbc.M309895200
  16. Heydemann A. An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res 2016; 2016: 2902351.
  17. Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol 2012; 821: 421-433.
  18. Comerford I, McColl SR. Mini-review series: focus on chemokines. Immunol Cell Biol 2011; 89(2): 183-184. https://doi.org/10.1038/icb.2010.164
  19. Bunting MD, Comerford I, McColl SR. Finding their niche: chemokines directing cell migration in the thymus. Immunol Cell Biol 2011; 89(2): 185-196. https://doi.org/10.1038/icb.2010.142
  20. Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol 2001; 2(2): 108-115. https://doi.org/10.1038/84209
  21. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4(7): 540-550. https://doi.org/10.1038/nrc1388
  22. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A 1994; 91(6): 2305-2309. https://doi.org/10.1073/pnas.91.6.2305
  23. Nagasawa T. CXCL12/SDF-1 and CXCR4. Front Immunol 2015; 6: 301.
  24. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 2010; 29(4): 709-722. https://doi.org/10.1007/s10555-010-9256-x
  25. Nagasawa T, Omatsu Y, Sugiyama T. Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol 2011; 32(7): 315-320. https://doi.org/10.1016/j.it.2011.03.009
  26. Sengenes C, Miranville A, Maumus M, de Barros S, Busse R, Bouloumie A. Chemotaxis and differentiation of human adipose tissue CD34+/CD31- progenitor cells: role of stromal derived factor-1 released by adipose tissue capillary endothelial cells. Stem Cells 2007; 25(9): 2269-2276. https://doi.org/10.1634/stemcells.2007-0180
  27. Shin J, Fukuhara A, Onodera T, Kita S, Yokoyama C, Otsuki M, Shimomura I. SDF-1 is an autocrine insulin-desensitizing factor in adipocytes. Diabetes 2018; 67(6): 1068-1078. https://doi.org/10.2337/db17-0706
  28. Peng H, Zhang H, Zhu H. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity. Biochem Biophys Res Commun 2016; 479(4): 649-655. https://doi.org/10.1016/j.bbrc.2016.09.158
  29. Kim D, Kim J, Yoon JH, Ghim J, Yea K, Song P, Park S, Lee A, Hong CP, Jang MS, Kwon Y, Park S, Jang MH, Berggren PO, Suh PG, Ryu SH. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 2014; 57(7): 1456-1465. https://doi.org/10.1007/s00125-014-3237-5
  30. Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 1998; 187(4): 655-660. https://doi.org/10.1084/jem.187.4.655
  31. Schiffer L, Worthmann K, Haller H, Schiffer M. CXCL13 as a new biomarker of systemic lupus erythematosus and lupus nephritis - from bench to bedside? Clin Exp Immunol 2015; 179(1): 85-89. https://doi.org/10.1111/cei.12439
  32. Klimatcheva E, Pandina T, Reilly C, Torno S, Bussler H, Scrivens M, Jonason A, Mallow C, Doherty M, Paris M, Smith ES, Zauderer M. CXCL13 antibody for the treatment of autoimmune disorders. BMC Immunol 2015; 16: 6. https://doi.org/10.1186/s12865-015-0068-1
  33. Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol 2015; 15(6): 350-361. https://doi.org/10.1038/nri3846
  34. Forster R, Emrich T, Kremmer E, Lipp M. Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 1994; 84(3): 830-840.
  35. Forster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 1996; 87(6): 1037-1047. https://doi.org/10.1016/S0092-8674(00)81798-5
  36. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 2010; 463(7280): 540-544. https://doi.org/10.1038/nature08636
  37. Benezech C, Luu NT, Walker JA, Kruglov AA, Loo Y, Nakamura K, Zhang Y, Nayar S, Jones LH, Flores-Langarica A, McIntosh A, Marshall J, Barone F, Besra G, Miles K, Allen JE, Gray M, Kollias G, Cunningham AF, Withers DR, Toellner KM, Jones ND, Veldhoen M, Nedospasov SA, McKenzie AN, Caamano JH. Inflammation-induced formation of fat-associated lymphoid clusters. Nat Immunol 2015; 16(8): 819-828. https://doi.org/10.1038/ni.3215
  38. Shaikh SR, Haas KM, Beck MA, Teague H. The effects of diet-induced obesity on B cell function. Clin Exp Immunol 2015; 179(1): 90-99. https://doi.org/10.1111/cei.12444
  39. Winer DA, Winer S, Chng MH, Shen L, Engleman EG. B Lymphocytes in obesity-related adipose tissue inflammation and insulin resistance. Cell Mol Life Sci 2014; 71(6): 1033-1043. https://doi.org/10.1007/s00018-013-1486-y
  40. Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol 2015; 15(7): 441-451. https://doi.org/10.1038/nri3857
  41. do Carmo LS, Rogero MM, Paredes-Gamero EJ, Nogueira-Pedro A, Xavier JG, Cortez M, Borges MC, Fujii TM, Borelli P, Fock RA. A high-fat diet increases interleukin-3 and granulocyte colony-stimulating factor production by bone marrow cells and triggers bone marrow hyperplasia and neutrophilia in Wistar rats. Exp Biol Med (Maywood) 2013; 238(4): 375-384. https://doi.org/10.1177/1535370213477976
  42. Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, Stephens JM, Mynatt RL, Dixit VD. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 2010; 185(3): 1836-1845. https://doi.org/10.4049/jimmunol.1000021