유청단백질 나노전달체의 기능적 특성

Functional Properties of Whey Protein-based Nano Delivery Systems

  • 하호경 (순천대학교 동물자원과학과)
  • Ha, Ho-Kyung (Department of Animal Science and Technology, Sunchon National University)
  • 발행 : 2018.10.25

초록

키워드

참고문헌

  1. Acosta E. 2009. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3-15. https://doi.org/10.1016/j.cocis.2008.01.002
  2. Bernard C, Regnault S, Gendreau S, Charbonneau S, Relkin P. 2011. Enhancement of emulsifying properties of whey proteins by controlling spray-drying parameters. Food Hydrocoll 25:758-763. https://doi.org/10.1016/j.foodhyd.2010.08.011
  3. Bryant CM, McClements DJ. 1998. Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trend Food Sci Technol 9:143-151. https://doi.org/10.1016/S0924-2244(98)00031-4
  4. Chen L, Subirade M. 2006. Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27:4646-4654. https://doi.org/10.1016/j.biomaterials.2006.04.037
  5. Chen L, Subirade M. 2005. Chitosan/${\beta}$-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26:6041-6053. https://doi.org/10.1016/j.biomaterials.2005.03.011
  6. Chen L, Remondetto GE, Subirade M. 2006. Food protein-based materials as nutraceutical delivery systems. Trend Food Sci Tech 17:272-283. https://doi.org/10.1016/j.tifs.2005.12.011
  7. Dufour EMC, Marden MC, Haertle T. 1990. ${\beta}$-Lactoglobulin binds retinol and protoporphyrin IX at two different binding sites. FEBS Lett 277:223-236. https://doi.org/10.1016/0014-5793(90)80850-I
  8. Ercan P, El SN. 2012. In vitro bioaccessibility of coenzyme Q10 in enriched yoghurts. Int J Food Sci Tech 47:1986-1992. https://doi.org/10.1111/j.1365-2621.2012.03061.x
  9. Euston SR, Finnigan SR, Hirst RL. 2000. Aggregation kinetics of heated whey protein-stabilized emulsions. Food Hydrocoll 14:155-161. https://doi.org/10.1016/S0268-005X(99)00061-2
  10. Fathi M, Mozafari MR, Mohebbi M. 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Tech 23:13-27. https://doi.org/10.1016/j.tifs.2011.08.003
  11. Fox PF, McSweeney PLH. 2003. Advanced dairy chemistry, proteins part A, vol. 1. 3 edn. Kluwer Academic/Plenum Publishers, New York.
  12. Gnunasekaran S, Xiao L, Eleya MMO. 2006. Whey protein concentrate hydrogels as bioactive carriers. J Applied Polym Sci 99:2470-2476. https://doi.org/10.1002/app.22838
  13. Ha HK, Lee MR, Lee WJ. 2018. Oxidative stability of DHA in ${\beta}$-lactoglobulin/oleic acid-modified chitosan oligosaccharide nanoparticles during storage in skim milk. LWT-Food Sci Technol 90:440-447. https://doi.org/10.1016/j.lwt.2017.12.055
  14. Hu MH, McClements DJ, Decker EA. 2003. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. J Agric Food Chem 51:1435-1439. https://doi.org/10.1021/jf0203794
  15. Hwang JY, Ha HK, Lee MR, Kim JW, Kim HJ, Lee WJ. 2017. Physicochemical property and oxidative stability of whey protein concentrate multiple nanoemulsion containing fish oil. J Food Sci 82:437-444. https://doi.org/10.1111/1750-3841.13591
  16. Kimpel F, Schmitt JJ. 2015. Review: Milk proteins as nanocarrier systems for hydrophobic nutraceuticals. J Food Sci 80:2361-2366. https://doi.org/10.1111/1750-3841.13096
  17. Lee MR, Choi HN, Ha HK, Lee WJ. 2013. Production and characterization of beta-lactoglobulin/alginate nanoemulsion containing coenzyme Q10: Impact of heat treatment and alginate concentrate. Korean J Food Sci An 33:67-74. https://doi.org/10.5851/kosfa.2013.33.1.67
  18. Liang L, Tajmir-Riahi HA, Subirade M. 2008. Interaction of beta-lactoglobulin with resveratrol and its biological implications. Biomacromolecules 9:50-56. https://doi.org/10.1021/bm700728k
  19. Livney YD. 2010. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci 15:73-83. https://doi.org/10.1016/j.cocis.2009.11.002
  20. Ron N, Zimet P, Bargarum J, Livney YD. 2010. Beta-lactoglobulin-polysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int Dairy J 20:686-693. https://doi.org/10.1016/j.idairyj.2010.04.001
  21. Ron N, Zimet P, Bargarum J, Livney YD. 2010. Beta-lactoglobulinepolysaccharide complexes as nanovehicles for hydrophobic nutraceuticals in non-fat foods and clear beverages. Int Dairy J 20:686-693. https://doi.org/10.1016/j.idairyj.2010.04.001
  22. Shishir MRI, Xie L, Sun C, Zheng X, Chen W. 2018. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trend Food Sci Technol 78:34-60. https://doi.org/10.1016/j.tifs.2018.05.018
  23. Shpigelman A, Israeli G, Livney YD. 2010. Thermally-induced protein-polyphenol co-assemblies: beta-lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocoll 24:735-743. https://doi.org/10.1016/j.foodhyd.2010.03.015
  24. Wang Q, Allen JC, Swaisgood HE. 1997. Binding of retinoids to ${\beta}$-lactoglobulin isolated by bioselective adsorption. J Dairy Sci 80:1047-1053. https://doi.org/10.3168/jds.S0022-0302(97)76029-6
  25. Ye A. 2008. Complexation between milk proteins and polysaccharides via electrostatic interaction: Principles and applications - A review. Int J Food Sci Technol 43:406-415. https://doi.org/10.1111/j.1365-2621.2006.01454.x