DOI QR코드

DOI QR Code

Interfacial Characterization of Mineralized Carbon Nanotubes

광물화된 탄소나노튜브 첨가재의 계면 특성화

  • Park, Chanwook (Department of Mechanical & Aerospace Engineering, Seoul National University) ;
  • Jung, Jiwon (Department of Mechanical & Aerospace Engineering, Seoul National University) ;
  • Yun, Gunjin (Department of Mechanical & Aerospace Engineering, Seoul National University)
  • Received : 2018.07.31
  • Accepted : 2018.10.13
  • Published : 2018.10.31

Abstract

In this paper, we explore interfacial properties of the mineralized CNTs when they are employed as reinforcing fillers in a polymer nanocomposite using molecular dynamics (MD) simulations. Recently, several studies on mineralizing carbon nanotubes (CNTs) with an aid of nitrogen doping to CNTs have been reported. However, there is a lack of studies on the reinforcing effects of the mineralized CNTs when it is employed as a filler of nanocomposites. Silica ($SiO_2$) is used as a mineral material and poly (methyl metacrylate) (PMMA) is used as a polymer matrix. Pull-out simulations are conducted to obtain the interfacial energy and the interfacial shear stress. It was found that the silica mineralized CNTs have higher interfacial interaction with the polymer matrix. In the future, by examining various thermomechanical properties of the mineralized-CNT-filler/polymer nanocomposites, we will search for potential applications of the novel reinforcing filler.

본 연구는 광물화된 탄소나노튜브를 고분자 기지재료의 강화재로 사용할 때, 계면 결합력이 기존 탄소나노튜브 강화재에 비해 어떤 차이를 보이는지 분자동역학 시뮬레이션을 통해 탐구한다. 최근 탄소나노튜브에 질소를 도핑한 후 표면을 광물화 하는 실험 연구가 보고되고 있다. 하지만 복합재료의 강화제로 첨가되었을 때 보일 수 있는 물성 증가 현상에 대한 연구는 아직 부족하다. 광물질로는 실리카($SiO_2$)를 사용했고 고분자 기지재료로는 열 가소성 수지인 poly(methyl metacrylate) (PMMA)를 사용했다. 계면 결합력과 계면 전단 응력을 계산하기 위해 강화재를 기지재료로부터 빼내는 pull-out 시뮬레이션이 진행되었다. 계산 결과, 실리카 광물화된 탄소나노튜브가 고분자 기지재료와 향상된 계면 상호작용을 가지는 것으로 조사되었다. 본 연구진은 향후 광물화된 탄소나노튜브 강화재가 첨가된 나노 복합재료의 열 기계적 물성을 분석하여 다양한 분야에서의 활용 가능성을 제시할 계획이다.

Keywords

References

  1. Heuer, A.H., Fink, D., Laraia, V., Arias, J., Calvert, P., Kendall, K., Messing, G., Blackwell, J., Rieke, P., and Thompson, D., "Innovative Materials Processing Strategies: A Biomimetic Approach," Science, Vol. 255, No. 5048, 1992, pp. 1098-1105. https://doi.org/10.1126/science.1546311
  2. Mann, S., "Molecular Recognition in Biomineralization," Nature, Vol. 332, No. 6160, 1988, pp. 119. https://doi.org/10.1038/332119a0
  3. Lee, W.J., Lee, D.H., Han, T.H., Lee, S.H., Moon, H.-S., Lee, J.A., and Kim, S.O., "Biomimetic Mineralization of Vertical Ndoped Carbon Nanotubes," Chemical Communications, Vol. 47, No. 1, 2011, pp. 535-537. https://doi.org/10.1039/c0cc04237d
  4. Ramasubramaniam, R., Chen, J., and Liu, H., "Homogeneous Carbon Nanotube/polymer Composites for Electrical Applications," Applied Physics Letters, Vol. 83, No. 14, 2003, pp. 2928-2930. https://doi.org/10.1063/1.1616976
  5. Rastogi, R., Kaushal, R., Tripathi, S., Sharma, A.L., Kaur, I., and Bharadwaj, L.M., "Comparative Study of Carbon Nanotube Dispersion Using Surfactants," Journal of colloid and interface science, Vol. 328, No. 2, 2008, pp. 421-428. https://doi.org/10.1016/j.jcis.2008.09.015
  6. Ramanathan, T., Fisher, F., Ruoff, R., and Brinson, L., "Aminofunctionalized Carbon Nanotubes for Binding to Polymers and Biological Systems," Chemistry of Materials, Vol. 17, No. 6, 2005, pp. 1290-1295. https://doi.org/10.1021/cm048357f
  7. Jung, H., Choi, H.K., Kim, S., Lee, H.-S., Kim, Y., and Yu, J., "The influence of N-doping Types for Carbon Nanotube Reinforced Epoxy Composites: A Combined Experimental Study and Molecular Dynamics Simulation," Composites Part A: Applied Science and Manufacturing, Vol. 103, 2017, pp. 17-24. https://doi.org/10.1016/j.compositesa.2017.09.005
  8. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L., "Nitrogendoped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction," Science, Vol. 323, No. 5915, 2009, pp. 760-764. https://doi.org/10.1126/science.1168049
  9. Lee, W.J., Lee, J.M., Kochuveedu, S.T., Han, T.H., Jeong, H.Y., Park, M., Yun, J.M., Kwon, J., No, K., and Kim, D.H., "Biomineralized N-doped CNT/$TiO_2$ Core/shell Nanowires for Visible Light Photocatalysis," ACS Nano, Vol. 6, No. 1, 2011, pp. 935-943. https://doi.org/10.1021/nn204504h
  10. Lee, W.J., Lim, J., and Kim, S.O., "Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity?," Small Methods, Vol. 1, No. 1-2, 2017.
  11. Lin, I.-H., Lu, Y.-H., and Chen, H.-T., "Nitrogen-doped Carbon Nanotube as a Potential Metal-free Catalyst for CO Oxidation," Physical Chemistry Chemical Physics, Vol. 18, No. 17, 2016, pp. 12093-12100. https://doi.org/10.1039/C6CP00162A
  12. Lee, W.J., Maiti, U.N., Lee, J.M., Lim, J., Han, T.H., and Kim, S.O., "Nitrogen-doped Carbon Nanotubes and Graphene Composite Structures for Energy and Catalytic Applications," Chemical Communications, Vol. 50, No. 52, 2014, pp. 6818-6830. https://doi.org/10.1039/c4cc00146j
  13. Lee, W.J., Hwang, T.H., Hwang, J.O., Kim, H.W., Lim, J., Jeong, H.Y., Shim, J., Han, T.H., Kim, J.Y., and Choi, J.W., "N-doped Graphitic Self-encapsulation for High Performance Silicon Anodes in Lithium-ion Batteries," Energy & Environmental Science, Vol. 7, No. 2, 2014, pp. 621-626. https://doi.org/10.1039/C3EE43322F
  14. Yu, S., Yang, S., and Cho, M., "Multi-scale Modeling of Crosslinked Epoxy Nanocomposites," Polymer, Vol. 50, No. 3, 2009, pp. 945-952. https://doi.org/10.1016/j.polymer.2008.11.054
  15. Arash, B., Park, H.S., and Rabczuk, T., "Mechanical Properties of Carbon Nanotube Reinforced Polymer Nanocomposites: A Coarse-grained Model," Composites Part B: Engineering, Vol. 80, 2015, pp. 92-100. https://doi.org/10.1016/j.compositesb.2015.05.038
  16. Khare, K.S., Khabaz, F., and Khare, R., "Effect of Carbon Nanotube Functionalization on Mechanical and Thermal Properties of Cross-linked Epoxy-carbon Nanotube Nanocomposites: Role of Strengthening the Interfacial Interactions," ACS Appl Mater Interfaces, Vol. 6, No. 9, 2014, pp. 6098-110. https://doi.org/10.1021/am405317x
  17. BIOVIA. Materials Studio. 2017; Available from: http://www.3dsbiovia.com/.
  18. Arash, B., Wang, Q., and Varadan, V., "Mechanical Properties of Carbon Nanotube/polymer Composites," Scientific Reports, Vol. 4, No. 2014, pp. srep06479.
  19. Hadden, C.M., Jensen, B.D., Bandyopadhyay, A., Odegard, G.M., Koo, A., and Liang, R., "Molecular Modeling of EPON-862/graphite Composites: Interfacial Characteristics for Multiple Crosslink Densities," Composites Science and Technology, Vol. 76, 2013, pp. 92-99. https://doi.org/10.1016/j.compscitech.2013.01.002
  20. Cha, J., Jin, S., Shim, J.H., Park, C.S., Ryu, H.J., and Hong, S.H., "Functionalization of Carbon Nanotubes for Fabrication of CNT/epoxy Nanocomposites," Materials & Design, Vol. 95, 2016, pp. 1-8. https://doi.org/10.1016/j.matdes.2016.01.077
  21. Li, Y., Liu, Y., Peng, X., Yan, C., Liu, S., and Hu, N., "Pull-out Simulations on Interfacial Properties of Carbon Nanotubereinforced Polymer Nanocomposites," Computational Materials Science, Vol. 50, No. 6, 2011, pp. 1854-1860. https://doi.org/10.1016/j.commatsci.2011.01.029
  22. Jin, Y., Duan, F., and Mu, X., "Functionalization Enhancement on Interfacial Shear Strength between Graphene and Polyethylene," Applied Surface Science, Vol. 387, 2016, pp. 1100-1109. https://doi.org/10.1016/j.apsusc.2016.07.047
  23. Liu, F., Hu, N., Zhang, J., Atobe, S., Weng, S., Ning, H., Liu, Y., Wu, L., Zhao, Y., and Mo, F., "The Interfacial Mechanical Properties of Functionalized Graphene-polymer Nanocomposites," RSC Advances, Vol. 6, No. 71, 2016, pp. 66658-66664. https://doi.org/10.1039/C6RA09292F
  24. Park, C. and Yun, G.J., "Characterization of Interfacial Properties of Graphene-Reinforced Polymer Nanocomposites by Molecular Dynamics-Shear Deformation Model," Journal of Applied Mechanics, Vol. 85, No. 9, 2018, pp. 091007. https://doi.org/10.1115/1.4040480
  25. Zheng, Q., Xia, D., Xue, Q., Yan, K., Gao, X., and Li, Q., "Computational Analysis of Effect of Modification on the Interfacial Characteristics of a Carbon Nanotube-polyethylene Composite System," Applied Surface Science, Vol. 255, No. 6, 2009, pp. 3534-3543. https://doi.org/10.1016/j.apsusc.2008.09.077
  26. Guo, G. and Zhu, Y., "Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate," Journal of Applied Mechanics, Vol. 82, No. 3, 2015.