DOI QR코드

DOI QR Code

Thermal/Mechanical Properties of Hafnium Carbide Coatings on Carbon-Carbon Composites

탄소-탄소 복합재료의 하프늄 탄화물 코팅재의 열적/기계적 특성

  • Received : 2018.07.18
  • Accepted : 2018.08.30
  • Published : 2018.10.31

Abstract

This study investigates thermal and mechanical characterization of Hafnium carbide coating on the $C_f-C$ composites. The hafnium carbide coatings by vacuum plasma spray on the C/C-SiC composites are prepared to evaluate oxidation and wear resistance. We perform the thermal durability tests by thermal cycling at $1200^{\circ}C$ for 10cycles in air and investigates the weight change of each cycle. We also evaluate the wear and indentation behavior using tungsten carbide ball indenter as a mechanical evaluation. As a result, the HfC coating is beneficial to reduce of weight loss during thermal cycling test and improve the elastic property of C/C-SiC composite. Especially, the HfC coating improves the wear resistance of C/C-SiC composite.

본 논문에서는 C/C-SiC 복합재료의 하프늄 탄화물 코팅재에 대한 열적, 기계적 특성을 평가하였으며 특히 코팅에 의한 내산화성과 내마모성의 향상여부를 평가하였다. 하프늄 탄화물(HfC)을 용사시켜 코팅한 샘플들을 가공한 후, 공기 중에서 열적 특성평가 및 마모, 압입시험 평가에 대한 연구를 수행하였다. 공기 중에서 $1200^{\circ}C$의 온도까지 승온시킨 후 1시간 유지하는 싸이클을 10싸이클 진행하여 각 싸이클마다의 무게변화를 통해 탄소의 산화저항성을 평가하였고, 초경 구(tungsten carbide)를 사용하여 마모시험과 압입시험을 수행하여 그 결과를 비교하였다. 열피로 시험 수행 결과 하프늄 탄화물 코팅재가 상대적으로 무게감소가 적어 상대적으로 내산화성이 높은 것으로 평가되었다. 코팅된 하프늄 탄화물에 의해 탄성계수가 상대적으로 증가하였으며, 또한 C/C-SiC 복합재료는 하프늄 탄화물의 코팅에 의하여 내마모성이 향상되어 동일조건에서 마모량이 상대적으로 적었고 낮고 안정된 마찰계수가 유지되었다.

Keywords

References

  1. Seo, M.K., Choi, K.E., Min, B.G., and Park, S.J., "Carbon Fibers (I): General Understanding and Manufacturing Techniques of Carbon Fibers," Carbon Letters, Vol. 9, 2008, pp. 218-231. https://doi.org/10.5714/CL.2008.9.3.218
  2. Balandin, Alexander A., "Thermal Properties of Graphene and Nanostructured Carbon Materials," Nature Materials, Vol. 10, 2011, pp. 569-581. https://doi.org/10.1038/nmat3064
  3. Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T., and Fischer, J.E., "Carbon Nanotube Composites for Thermal Management," Applied Physics Letters, Vol. 80, 2002, pp. 2767-2769. https://doi.org/10.1063/1.1469696
  4. Shamsa, M., Liu, W.L., Balandin, A.A., Casiraghi, C., Milne, W. I., and Ferrari, A.C., "Thermal Conductivity of Diamond-like Carbon Films," Applied Physics Letters, Vol. 89, 2006, pp. 161921-161924. https://doi.org/10.1063/1.2362601
  5. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S.V., Van Vuure, A.W., Gorbatikhb, L., Moldenaersc, P., and Verpoest, I., "Influence of Carbon Nanotube Reinforcement on the Processing and the Mechanical Behaviour of Carbon Fiber/Epoxy Composites," Carbon, Vol. 47, 2009, pp. 2914-2923. https://doi.org/10.1016/j.carbon.2009.06.039
  6. Windhorst, T., and Blount, G., "Carbon-Carbon Composites: A Summary of Recent Developments and Application," Materials & Design, Vol. 18, 1997, pp. 11-15.
  7. Yokozeki, T., Iwahori, Y., and Ishiwata, S., "Matrix Cracking Behaviors in Carbon Fiber/Epoxy Laminates Filled with Cupstacked Carbon Nanotubes (CSCNTs)," Composites Part A: Applied Science and Manufacturing, Vol. 38, 2007, pp. 917-924. https://doi.org/10.1016/j.compositesa.2006.07.005
  8. Lin, T., Jia, D., He, P., Wang, M., and Liang, D., "Effects of Fiber Length on Mechanical Properties and Fracture Behavior of Short Carbon Fiber Reinforced Geopolymer Matrix Composites," Materials Science and Engineering: A, Vol. 497, 2008, pp. 181-185. https://doi.org/10.1016/j.msea.2008.06.040
  9. Dong, S.R., Tu, J.P., and Zhang, X.B., "An Investigation of the Sliding Wear Behavior of Cu-Matrix Composite Reinforced by Carbon Nanotubes," Materials Science and Engineering: A, Vol. 313, 2001, pp. 83-87.
  10. Lancaster, J.K., "The Effect of Carbon Fibre Reinforcement on the Friction and Wear of Polymers," Journal of Physics D: Applied Physics, Vol. 1, 1968 p. 549. https://doi.org/10.1088/0022-3727/1/5/303
  11. Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A. L., and Griffith, W., "Lignin-Based Carbon Fibers for Composite Fiber Applications," Carbon, Vol. 40, 2002, pp. 2913-2920. https://doi.org/10.1016/S0008-6223(02)00248-8
  12. Zhu, Q., Qiu, X., and Ma, C., "Oxidation Resistant SiC Coating for Graphite Materials," Carbon, Vol. 37, 1999, pp. 1475-1484.
  13. Lee, K.S., Sihn, I.C., Lim, B.J., and Lim, K.H., "Macroscopic Wear Behavior of C/C and C/C-SiC Composites Coated with Hafnium Carbide," Journal of the Korean Ceramic Society, Vol. 52, 2015, pp. 429-434. https://doi.org/10.4191/kcers.2015.52.6.429
  14. Huo, C., Guo, L., Feng, L., Wang, C., Li, Z., Zhang, Y., and Kou, G., "Improving the Oxidation Resistance under Thermal Shock Condition of SiC-Coated C/C Composites with Refined SiC Grain Size using Ferrocene," Surface and Coatings Technology, Vol. 316, 2017, pp. 39-47.
  15. Lee, K.S., Jang, B.K., and Sakka, Y., "Damage and Wear Resistance of $Al_2O_3$-CNT Nanocomposites Fabricated by Spark Plasma Sintering," Journal of the Ceramic Society of Japan, Vol. 121, 2013, pp. 867-872. https://doi.org/10.2109/jcersj2.121.867
  16. Oliver, W.C., and Pharr, G.M., "An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments," Journal of Materials Research, Vol. 7, 1992, pp. 1564-1583. https://doi.org/10.1557/JMR.1992.1564
  17. Lawn B.R., "Indentation of Ceramics with Spheres," Journal of the American Ceramic Society, Vol. 81, 1998, pp. 1977-1994.
  18. Lawn, B.R., Deng, Y., and Thompson, V.P., "Use of Contact Testing in the Characterization and Design of All-Ceramic Crownlike Layer Structures: A Review," Journal of Prosthetic Dentistry, Vol. 86, 2001, pp. 495-510.
  19. Pharr, G.M., "Measurement of Mechanical Properties by Ultra- Low Load Indentation," Materials Science and Engineering: A, Vol. 253, 1998, pp. 151-159. https://doi.org/10.1016/S0921-5093(98)00724-2
  20. Lee, D.H., and Lee, K.S., "Mechanical Behavior of Layered YSZ Thermal Barrier Coatings Using Indentation Test," Journal of the Korean Ceramic Society, Vol. 48, 2011, pp. 396-403. https://doi.org/10.4191/kcers.2011.48.5.396
  21. Bao, Y.W., Wang, W., and Zhou, Y.C., "Investigation of the Relationship between Elastic Modulus and Hardness Based on Depth-Sensing Indentation Measurements," Acta Materialia, Vol. 52, 2004, pp. 5397-5404. https://doi.org/10.1016/j.actamat.2004.08.002
  22. Yoo, H.I., Kim, H.S., Hong, B.G., Sihn, I.-C., Lim, K.-H., Lim, B.-J., and Moon, S.Y., "Hafnium Carbide Protective Layer Coatings on Carbon/Carbon Composites Deposited with a Vacuum Plasma Spray Coating Method," Journal of the European Ceramic Society, Vol. 36, 2016, pp.1581-1587.
  23. Lee, K.S., Kim, I.K., Kim, T.W., Kim, S.Y., Han, I.S., and Woo, S.K., "Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities," Journal of the Korean Ceramic Society, Vol. 48, 2011, pp. 288-292.
  24. Caprino, G., and Lopresto, V., "The Significance of Indentation in the Inspection of Carbon Fibre-Reinforced Plastic Panels Damaged by Low-Velocity Impact," Composites Science and Technology, Vol. 60, 2000, pp. 1003-1012. https://doi.org/10.1016/S0266-3538(99)00196-7
  25. Chae, Y.H., Moon, H.S., Kim, S., Woo, S.K., Park, J.Y., and Lee, K.S., "Thermal and Mechanical Evaluation of Environmental Barrier Coatings for $SiC_f$-SiC Composites," Composites Research, Vol. 30, 2017, pp. 84-93.
  26. Oliver, W.C., and Pharr, GM., "Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology," Journal of Materials Research, Vol. 19, 2004, pp. 3-20. https://doi.org/10.1557/jmr.2004.19.1.3