DOI QR코드

DOI QR Code

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite

폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작

  • Kang, So-Young (Department of Mechanical Engineering, Hanyang University) ;
  • Kim, Do-Hyoung (Department of Mechanical Engineering, Hanyang University) ;
  • Kim, Dong-Hyun (Department of Mechanical Engineering, Hanyang University) ;
  • Kim, Hak-Sung (Institute of Nano Science and Technology, Hanyang University)
  • Received : 2018.07.31
  • Accepted : 2018.09.19
  • Published : 2018.10.31

Abstract

The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.

변형률 속도 $100s^{-1}{\sim}10000s^{-1}$ 범위에서 사용되는 홉킨스바(SHPB)는 재료의 동석 거동 특성을 확인하기 위해 가장 널리 사용되는 장치이다. SHPB 시험은 입력봉 및 전달봉에서 측정된 변형률을 사용하여 시험편의 응력, 변형률 및 변형률 속도를 얻을 수 있는 응력파 전달 이론을 기반으로 한다. 본 연구에서는 고 변형률 속도에서 폴리프로필렌 자기보강 복합재료(SRPP)의 동적 특성을 얻기 위해 직접 SHPB를 설계 및 제작하였다. 또한 본 연구를 통해 제작된 SHPB에서 얻은 변형률 데이터의 신뢰성 확보를 위하여 Digital Image Correlation (DIC)를 통해 얻은 변형률 데이터와의 비교를 진행하였다. 이는 SRPP 시편의 고속 압축 시험을 통해 이루어 졌으며 SHPB를 통하여 얻은 데이터와 DIC를 통해 얻은 변형률 데이터의 유사함을 확인하였고 이를 통하여 장비의 신뢰성을 검증하였다.

Keywords

References

  1. Friedrich, K., and Almajid, A.A., "Manufacturing Aspect of Advanced Polymer Composites for Automotive Applications," Applied Composite Materials, Vol. 20, 2013, pp. 107-128. https://doi.org/10.1007/s10443-012-9258-7
  2. Hamerton, I., Recent Developments in Epoxy Resins, iSmithers Rapra Publishing, 1996.
  3. Favaloro, M., A Comparison of the Environmental Attributes of Thermoplastic vs. Thermoset Composite, Cell, 978, 2009, pp. 270-6011.
  4. Chen, W.W., and Song, B., Split Hopkinson(Kolsky) Bar : Design, Testing and Applications, Springer Science & Business Media, 2010.
  5. Guedes, R., Moura, M., and Ferreira, F., "Failure Analysis of Quasi-isotropic CFRP Laminates under High Strain Rate Compression Loading," Composite Structures, Vol. 84, 2008, pp. 362-368.
  6. Koerber, H., Xavier, J., and Camanho, P., "High Strain Rate Characterisation of Unidirectional Carbon-epoxy IM7-8552 in Transverse Compression and In-plane Shear Using Digital Image Correlation," Mechanics of Materials, Vol. 42, 2010, pp. 1004-1019. https://doi.org/10.1016/j.mechmat.2010.09.003
  7. Tarfaoui, M., Neme, A., and Choukri, S., "Damage Kinetics of Glass/epoxy Composite Materials under Dynamic Compression," Journal of Composite Materials, Vol. 43, 2009, pp. 1137-1154. https://doi.org/10.1177/0021998308098336
  8. Follansbee, S., The Hopkinson Bar in Metals Handbook, Mechanical Testing American Society for Metals Park, 1978.
  9. Williams, K.V., Vaziri, R., and Poursartip, A., "A Physically Based Continuum Damage Mechanics Model for Thin Laminated Composite Structures," International Journal of Solids and Structures, Vol. 40, 2003, pp. 2267-2300.
  10. Ladeveze, P., and LeDantec, E., "Damage Modeling of the Elementary Ply for Laminated Composites," Composites Science and Technology, Vol. 43, 1992, pp. 257-267. https://doi.org/10.1016/0266-3538(92)90097-M
  11. McKown, S., and Cantwell, W.J., "Investigation of Strain-rate Effect in Self-reinforced Polypropylene Composites," Composite Materials, Vol. 41, No. 20, 2007.