DOI QR코드

DOI QR Code

Numerical Study on Inverse Analysis Based on Levenberg-Marquardt Method to Predict Mode-I Adhesive Behavior of Fiber Metal Laminate

섬유금속적층판의 모드 I 접합 거동 예측을 위한 Levenberg-Marquardt 기법 기반의 역해석 기법에 관한 수치적 연구

  • Park, Eu-Tteum (Department of Aerospace Engineering, Pusan National University) ;
  • Lee, Youngheon (Department of Aerospace Engineering, Pusan National University) ;
  • Kim, Jeong (Department of Aerospace Engineering, Pusan National University) ;
  • Kang, Beom-Soo (Department of Aerospace Engineering, Pusan National University) ;
  • Song, Woojin (Graduate School of Convergence Science, Pusan National University)
  • Received : 2018.04.20
  • Accepted : 2018.06.09
  • Published : 2018.10.31

Abstract

Fiber metal laminate (FML) is a type of hybrid composites which consist of metallic and fiber-reinforced plastic sheets. As the FML has a drawback of the delamination that is a failure of the interfacial adhesive layer, the nominal stresses and the energy release rates should be determined to identify the delamination behavior. However, it is difficult to derive the nominal stresses and the energy release rates since the operating temperature of the equipment is restricted. For this reason, the objective of this paper is to predict the mode-I nominal stress and the mode-I energy release rate of the adhesive layer using the inverse analysis based on the Levenberg-Marquardt method. First, the mode-I nominal stress was assumed as the tensile strength of the adhesive layer, and the mode-I energy release rate was obtained from the double cantilever beam test. Next, the finite element method was applied to predict the mode-I delamination behavior. Finally, the mode-I nominal stress and the mode-I energy release rate were predicted by the inverse analysis. In addition, the convergence of the parameters was validated by trying to input two cases of the initial parameters. Consequently, it is noted that the inverse analysis can predict the mode-I delamination behavior, and the two input parameters were converged to similar values.

섬유금속적층판은 금속과 섬유 강화 복합소재를 함께 적층한 하이브리드 재료 중 하나다. 섬유금속적층판은 계면의 접착층이 파괴되는 층간분리 현상이 발생할 수 있기 때문에 계면의 접착층에 대한 한계응력과 에너지 해방률을 실험적으로 도출해야만 한다. 하지만, 온도에 따른 에너지 해방률을 실험적으로 도출하는 과정에서 측정 장비의 사용 온도에 대한 제약을 받는다. 따라서, 본 연구에서는 Levenberg-Marquardt 기법을 기반한 역해석 기법을 사용하여 접착층에 대한 모드 I 한계응력과 에너지 해방률에 대한 예측 가능성을 확인하는 것이 목표다. 먼저, 한계응력은 접착층의 인장강도와 같다고 가정하였으며, 에너지 해방률은 DCB 시험(double cantilever beam test)을 수행하여 정의하였다. 또한, 유한요소법 기반 모델을 적용하여 한계응력과 에너지 해방률을 수치해석적으로 예측할 수 있는 지 확인하였다. 그 후, Levenberg-Marquardt 기법을 유한요소법 기반 모델에 적용하여 모드 I 한계응력과 에너지 해방률을 수치해석적으로 예측하였다. 아울러, 본 연구에서 사용한 역해석 기법의 수렴성을 확보하기 위하여 두 가지 경우의 초기 매개변수에 대한 역해석을 추가적으로 수행하였다. 결과적으로, 본 연구에서 사용한 역해석 기법은 모드 I 한계응력과 에너지 해방률을 효과적으로 예측할 수 있음을 보였다.

Keywords

References

  1. Vermeeren, C.A.J.R., "An Historic Overview of the Development of Fibre Metal Laminates," Applied Composite Materials, Vol. 10, No. 4, 2003, pp. 189-205. https://doi.org/10.1023/A:1025533701806
  2. Park, E.T., Kim, J., Kang, B.S., and Song, W.J., "Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate," Composites Research, Vol. 30, No. 2, 2017, pp. 158-164. https://doi.org/10.7234/COMPOSRES.2017.30.2.158
  3. Reyes, G., and Kang, H., "Mechanical Behavior of Lightweight Thermoplastic Fiber-Metal Laminates," Journal of Materials Processing Technology, Vol. 186, No. 1, 2007, pp. 284-290.
  4. Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., Paraschi, M., and Williams, J.G., "The Calculation of Adhesive Fracture Energies in Mode I: Revisiting the Tapered Double Cantilever Beam (TDCB) Test," Engineering Fracture Mechanics, Vol. 70, No. 2, 2003, pp. 233-248. https://doi.org/10.1016/S0013-7944(02)00031-0
  5. Lee, B.E., Park, E.T., Ko, D.C., Kang, B.S., and Song, W.J., "Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models," Composites Research, Vol. 29, No. 2, 2016, pp. 45-52. https://doi.org/10.7234/composres.2016.29.2.045
  6. Tsai, G.C., and Chen, J.W., "Effect of Stitching on Mode-I Strain Energy Release Rate," Composite Structures, Vol. 69, No. 1, 2005, pp. 1-9. https://doi.org/10.1016/j.compstruct.2004.02.009
  7. Davidson, P., Waas, A.M., and Yerramalli, C.S., "Experimental Determination of Validated, Critical Interfacial Modes I and II Energy Release Rates in a Composite Sandwich Panel," Composite Structures, Vol. 94, No. 2, 2012, pp. 477-483. https://doi.org/10.1016/j.compstruct.2011.08.007
  8. Becht, G., and Gillespie, J.R.J.W., "Design and Analysis of the Crack Rail Shear Specimen for Mode III Interlaminar Fracture," Composites Science and Technology, Vol. 31, No. 2, 1988, pp. 143-157. https://doi.org/10.1016/0266-3538(88)90088-7
  9. De Morais, A.B., De Moura, M.F., Marques, A.T., and De Castro, P.T., "Mode-I Interlaminar Fracture of Carbon/Epoxy Cross-Ply Composites," Composites Science and Technology, Vol. 62, No. 5, pp. 679-686. https://doi.org/10.1016/S0266-3538(01)00223-8
  10. Heidari-Rarani, M., Shokrieh, M.M., and Camanho, P.P., "Finite Element Modeling of Mode I Delamination Growth in Laminated DCB Specimens with R-Curve Effects," Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 897-903. https://doi.org/10.1016/j.compositesb.2012.09.051
  11. Woo, K.S., and Cairns, D.S., "Fracture Analysis of Notched Laminated Composites using Cohesive Zone Modeling," Composites Research, Vol. 30, No. 2, 2017, pp. 149-157. https://doi.org/10.7234/COMPOSRES.2017.30.2.149
  12. Jang, J.H., Sung, M.C., and Yu, W.R., "Numerical Simulation of the Delamination Behavior of Polymeric Adhesive Tapes using Cohesive Zone Element," Composites Research, Vol. 29, No. 4, 2016, pp. 203-208. https://doi.org/10.7234/composres.2016.29.4.203
  13. Xu, Y., Li, X., Wang, X., and Liang, L., "Inverse Parameter Identification of Cohesive Zone Model for Simulating Mixed-Mode Crack Propagation," International Journal of Solids and Structures, Vol. 51, No. 13, 2014, pp. 2400-2410. https://doi.org/10.1016/j.ijsolstr.2014.03.008
  14. Jin, G., Wu, P., Xu, Y., Liang, L., and Liu, Y., "Determination of Solder/Cu Interfacial Cohesive Zone Model Parameters by Inverse Analysis, Proceeding of the 15th International Conference on Electronic Packaging Technology, Chengdu, China, Aug. 2014, pp. 610-614.
  15. Chen, X., Deng, X., Sutton, M.A., and Zavattieri, P., "An Inverse Analysis of Cohesive Zone Model Parameter Values for Ductile Crack Growth Simulations," International Journal of Mechanical Sciences, Vol. 79, 2014, pp. 206-215. https://doi.org/10.1016/j.ijmecsci.2013.12.006
  16. ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, 2013.
  17. Simulia, D.S., ABAQUS User's Manual, Dassault Systems, 2013.
  18. Gavin, H., "The Levenberg-Marquardt Method for Nonlinear Least Squares Curve-Fitting Problems," Department of Civil and Environmental Engineering, Duke University, USA, 2011, pp. 1-15.
  19. Whitney, D., "Optimum Step Size Control for Newton-Raphson Solution of Nonlinear Vector Equations," IEEE Transactions on Automatic Control, Vol. 14, No. 5, 1969, pp. 572-574.