DOI QR코드

DOI QR Code

Preparation and Performance of Low Pressure PVDF Nano-composite Hollow Fiber Membrane Using Hydrophilic Polymer

친수화 고분자 소재를 이용한 저압용 PVDF 나노복합중공사막의 제조 및 성능 연구

  • Park, Cheol Oh (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 박철오 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2018.10.19
  • Accepted : 2018.10.29
  • Published : 2018.10.31

Abstract

In this study, the nanofiltration (NF) composite membranes for the low pressure use were prepared using polyvinylidene fluoride (PVDF) hollow fiber membrane as a supporter. Poly styrene sulfonic acid (PSSA) and polyethyleneimine (PEI) were coated onto the PVDF membrane by both layer-by-layer and salting-out methods. To characterize the prepared NF membranes in terms of the flux and salt rejection, 100 mg/L feed solutions of NaCl, $MgCl_2$, and $CaSO_4$ were used at the flow rate of 1 L/min and the operating pressure of 2 bar at room temperature. The NF membranes coated with 20,000 ppm PSSA (ionic strength 1.0) solution for 3 minutes and then 30,000 ppm (ionic strength 0.1) solution for 1 minute were observed the best performance. The permeability and salt rejection were 38.5 LMH, 57.1% for NaCl, 37.9 LMH and 90.2% for $MgCl_2$ and 32.4 LMH and 54.6% for $CaSO_4$, respectively.

본 연구에서는 polyvinylidene fluoride (PVDF) 중공사막을 지지체로 한 저압용 나노복합막을 제조하였다. Poly styrene sulfonic acid (PSSA)와 polyethyleneimine (PEI)을 layer-by-layer 및 염석 효과 방식으로 지지체막에 코팅하였다. 막의 투과도와 염 배제율 성능을 알아보고자 NaCl, $MgCl_2$, $CaSO_4$ 100 mg/L수용액을 1 L/min의 유량으로, 2 bar의 압력을 상온에서 가해주었다. 20,000 ppm의 PSSA (이온세기 1.0)용액에 3분, 30,000 ppm (이온세기 0.1)용액에 1분 코팅한 막이 가장 우수하였다. 투과도와 염 배제율은 NaCl 공급액에서는 38.5 LMH, 57.1%, $MgCl_2$는 37.9 LMH, 90.2%, $CaSO_4$는 32.4 LMH, 54.6%로 각각 측정되었다.

Keywords

References

  1. M. M. Penderpast and E. M. V. Hoek, "A review of water treatment membrane nanotechnologies", Energy. Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  2. G. Ciardelli, L. Corsi, and M. Marcucci, "Membrane separation for wastewater reuse in the textile industry", Resour. Conserv. Recycl., 31, 189 (2001). https://doi.org/10.1016/S0921-3449(00)00079-3
  3. J. Radjenovic, M. Petrovic, F. Ventura, and D. Barcelo, "Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment", Water Res., 42, 3601 (2008). https://doi.org/10.1016/j.watres.2008.05.020
  4. N. Hilal, H. Al-Zoubi, N. A. Darwish, A. W. Mohamma, and M. Abu Arabi, "A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy", Desalination, 170, 281 (2004). https://doi.org/10.1016/j.desal.2004.01.007
  5. P. Berg, G. Hagmeyer, and R. Gimbel, "Removal of pesticides and other micropollutants by nanofiltration", Desalination, 113, 208 (1997).
  6. L. Linahao, W. Baoguo, T. Huimin, C. Tianlu, and X. Jiping, "A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane", J. Membr. Sci., 269, 84 (2006). https://doi.org/10.1016/j.memsci.2005.06.021
  7. W. Jin, A. Toutianoush, and B. Tieke, "Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes", Lanmuir, 19, 2550 (2003). https://doi.org/10.1021/la020926f
  8. J. Kong, and K. Li, "Preparation of PVDF hollow-fiber membranes via immersion precipitation", J. Appl. Polym. Sci., 81, 1642 (2001).
  9. P. W. Kramer, Y. S. Yeh, and H. Yasuda, "Low temperature plasma for the preparation of separation membranes", J. Membr. Sci. 46, 1 (1989). https://doi.org/10.1016/S0376-7388(00)81167-9
  10. G. Xomeritakis and Y. S. Lin, "Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition", J. Membr. Sci., 120, 261 (1996). https://doi.org/10.1016/0376-7388(96)00149-4
  11. P. T. Hammond, "Form and Function in Multilayer Assembly: New Applications at the Nanoscale", Adv. Mater., 16, 1271 (2004). https://doi.org/10.1002/adma.200400760
  12. A. L. Rogach, D. S. Koktysh, M. Harrison, and N. A. Kotov, "Layer-by-layer assembled films of HgTe nanocrystals with strong infrared emission", Chem. Mater., 12, 1526 (2000). https://doi.org/10.1021/cm0000649
  13. Y. S. Jeon and J. W. Rhim, "Composite membrane preparation for low pressure using salting-out method and Its application to nanofiltration process", Membr. J., 25, 440 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.440
  14. E. Allemann, R. Gurny, and E. Doelker, "Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size", Int. J. Pharm., 87, 247 (1992). https://doi.org/10.1016/0378-5173(92)90249-2
  15. H. L. Chen, Y. S. Chen, and R. S. Juang, "Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process", Sep. Purif. Technol., 59, 244 (2008). https://doi.org/10.1016/j.seppur.2007.06.010
  16. E. H. Cho and J. W. Rhim. "Preparation of a new charged nanofiltration membrane based on polyelectrolyte complex by forced fouling induction for a household water purifier", Macrom. Res., 23, 183 (2015). https://doi.org/10.1007/s13233-015-3017-1
  17. D. H. Shin, S. I. Cheong, and J. W. Rhim, "Ions removal of contaminated water with radioactive ions by reverse osmosis membrane process", Membr. J., 26, 401 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.401