DOI QR코드

DOI QR Code

Effective Acne Detection using Component Image a* of CIE L*a*b* Color Space

CIE L*a*b* 칼라 공간의 성분 영상 a*을 이용한 효과적인 여드름 검출

  • Park, Ki-Hong (Division of Convergence Computer & Media, Mokwon University) ;
  • Noh, Hui-Seong (Department of Land, Water and Environment Research, KICT)
  • 박기홍 (목원대학교 융합컴퓨터.미디어학부) ;
  • 노희성 (한국건설기술연구원 국토보전연구본부)
  • Received : 2018.06.23
  • Accepted : 2018.07.25
  • Published : 2018.07.31

Abstract

Today, modern people perceive skin care as part of their physical health care, and acne is a common skin disease problem that is found on the face. In this paper, an effective acne detection algorithm using CIE $L^*a^*b^*$ color space has been proposed. It is red when the pixel value of the component image $a^*$ is a positive number, so it is suitable for detecting acne in skin image. First, the skin image based on the RGB color space is subjected to light compensation through color balancing, and converted into a CIE $L^*a^*b^*$ color space. The extracted component image $a^*$ was normalized, and then the skin and acne area were estimated with the threshold values. Experimental results show that the proposed method detects acne more effectively than the conventional method based on brightness information, and the proposed method is robust against the reflected light source.

오늘날 현대인들은 피부 관리를 신체적 건강관리의 일환으로 인식하고 있으며, 일반적으로 얼굴에서 발견되는 피부 질환 문제는 여드름이다. 본 논문에서는 CIE $L^*a^*b^*$ 칼라 공간을 이용한 효과적인 여드름 검출 알고리즘을 제안하였다. 성분 영상$a^*$의 값이 양수일 경우에 적색이므로 피부 영상에서 적색 계통의 여드름 검출에 적합하다. 먼저 RGB 칼라 공간 기반의 피부 영상은 칼라 밸런싱을 통해 광 보상을 수행하고, CIE $L^*a^*b^*$ 칼라 공간으로 변환한다. 추출된 성분 영상 $a^*$을 정규화하고, 임계값 처리를 통해 피부 영역과 여드름 영역을 추정하였다. 실험 결과, 제안하는 방법이 기존의 밝기 정보를 이용한 방법보다 효과적으로 여드름을 검출하였고, 반사되는 광원에 강인함을 보였다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. J. D. Kim and J. E. Seol, “A Study on the State of Acne Awareness and Care,” The Journal of the Korean Society of Knit Design, Vol. 13, No. 2, pp. 1-9, June, 2015.
  2. Y. B. Kim, J. H. Baek and B. C. Ahn, "An Implementation of a Skin Care System for Android Phones," in Proceedings of International Conference on Embedded Systems, Cyber-physical Systems, & Applications, pp. 57-61, 2016.
  3. Humayun J., Malik A.S., Belhaouari S.B., Kamel N., Yap F.B.B., et al, "Localization of acne lesion through template matching," in Proceedings of 4th International IEEE ICIAS Conference, pp. 91-94, 2012.
  4. H. Fuji, T. Yanagisawa, M. Mitsui, Y. Murakami, M. Yamaguchi, N. Ohyama, T. Abe, I. Yokoi, Y. Matsuoka, and Y. Kubota, "Extraction of acne lesion in acne patients from multispectral images," in Proceedings of 30th Annual international IEEE EMBS conference, pp. 4078-4081, 2008.
  5. R. C. Gonzalez, R. E. Woods, S. L. Eddins, Digital image processing using MATLAB, 1st ed. New Jersey, NJ: Pearson Prentice Hall, 2004.
  6. VOCAL Technologies, RGB and HSV/HSI/HSL Color Space Conversion[Internet]. Available: https://www.vocal.com/video/rgb-and-hsvhsihsl-color-space-conversion/.
  7. H. J. Yang, D. H. Kim and Y. G. Seo, “Noise-robust Hand R egion Segmentation In RGB Color-based Real-time Image,” The Journal of Digital Contents Society, Vol. 18, No. 8, pp. 1603-1613, Dec., 2017. https://doi.org/10.9728/DCS.2017.18.8.1603
  8. Wikipedia, CIE 1931 color space[Internet]. Available: https://en.wikipedia.org/wiki/CIE_1931_color_space.
  9. Wikipedia, CIELAB color space[Internet]. Available: https://en.wikipedia.org/wiki/CIELAB_color_space.
  10. H. B. Kwon, D. J. Kwon, U. D. Chang, Y. B. Yun and J. H. Ahn, “A Facial Region Detection using the Skin Color and Edge Information at YCbCr,” The Journal of Korea Multimedia Society, Vol. 7, No. 1, pp. 27-34, Jan., 2004.
  11. S. Kolkur, D. Kalbande, P. Shimpi, C. Bapat, and J. Jatakia, "Human skin detection using RGB, HSV and YCbCr color models," in Proceedings of the International Conference on Communication and Signal Processing, Lonere, India, pp. 324-332, 2016.
  12. C. G. Woo, J. H. Kim, K. H. Park and Y. H. Kim, "Skin Region Detection using YCbCr and L*a*b* Color Space," in Proceedings of the 2018 KIIT-DCS Summer Conference, pp. 63-65, 2018.
  13. P. Yogarajah, J. Condell, K. Curran, A. Cheddad and P. McKevitt, "A Dynamic Threshold Approach For Skin Segmentation in Color Images," in Proceedings of 2010 IEEE International Conference on Image Processing, Hong Kong, pp. 2225-2228, Sep., 2010.
  14. T. Chantharaphaichit, B. Uyyanonvara, C. Sinthanayothin and A. Nishihara, "Automatic Acne Detection for Medical Treatment," in Proceedings of International Conference of Information and Communication Technology for Embedded Systems, pp. 33-38, 2015.
  15. Nasim A., Kouhyar T., Minhal A. and Reza F.-R., "Detection and Classification of Acne Lesions in Acne Patients: A Mobile Application," in Proceedings of 2016 IEEE International Conference on Electro Information Technology, pp. 739-743, 2016.

Cited by

  1. A Quantitative and Qualitative Study on Virtual Makeup of Instant Beautifying Application - Focus on Color and Shape vol.19, pp.9, 2018, https://doi.org/10.9728/dcs.2018.19.9.1653
  2. A Real-time Citrus Segmentation and Detection System using Mask R-CNN vol.19, pp.12, 2018, https://doi.org/10.9728/dcs.2018.19.12.2385
  3. Security Enhanced Anonymous Two Factor Mutual Authentication Scheme with Key Agreement vol.19, pp.12, 2018, https://doi.org/10.9728/dcs.2018.19.12.2415
  4. Skin Condition Analysis of Facial Image using Smart Device: Based on Acne, Pigmentation, Flush and Blemish vol.8, pp.2, 2018, https://doi.org/10.14801/jaitc.2018.8.2.47
  5. Effective Pigmentation Detection using Component Image R of RGB Color Model vol.20, pp.2, 2018, https://doi.org/10.9728/dcs.2019.20.2.307
  6. 영상장치 기반 정밀치료용 레이저 수술기의 성능 평가 방법 개발 vol.40, pp.6, 2019, https://doi.org/10.9718/jber.2019.40.6.230
  7. Acne Detection Methods and Performance Analysis using Component Images of Various Color Spaces vol.22, pp.9, 2018, https://doi.org/10.9728/dcs.2021.22.9.1529